Современные способы переработки и утилизации промышленных отходов реферат скачать бесплатно

Автор: Пользователь скрыл имя, 26 Января 2012 в 16:50, реферат

Краткое описание

Цель же данной работы заключается в рассмотрении основных ныне существующих и перспективных способов утилизации и переработки промышленных отходов. Достижение глобальной цели в процессе выполнения работы достигалось рассмотрением локальных задач. Во-первых, дать понятие промышленных отходов и рассмотреть их классификацию по различным критериям: по их химической природе, технологическим признакам образования, возможности дальнейшей переработке и использования и степени их токсичности.

Оглавление

ВВЕДЕНИЕ 3
1. Общая характеристика отходов промышленности 5
1.1. Основные понятия отходов 5
1.2. Классификация отходов промышленности 6
2. Методы хранения отходов промышленности 8
2.1. Использование хранилищ промышленных отходов 8
2.1.1 Хранение взрывоопасных отходов 9
2.2. Наземные полигоны 11
3. Разработка малоотходных и безотходных технологий и методов комплексного использования отходов промышленности 12
3.1. Металлургия 15
3.2. Топливно-энергетический комплекс 19
3.3. Химический комплекс 21
ЗАКЛЮЧЕНИЕ 23
СПИСОК ЛИТЕРАТУРЫ 25

Файлы: 1 файл

БЖД.doc

— 143.50 Кб (Скачать)

    Особое  место занимают установки улавливания  SOX и NOX, т.к. этот процесс весьма затруднителен вследствие низких концентраций данных веществ.

    В работах [10 и 12] упоминается, что существует опыт использования шламов сероочистки после мокрой известковой обработки для мелиорации почв, что увеличивает содержание в почве кальция, магния, кремния и уменьшает количество алюминия, меди, цинка, мышьяка, марганца. Действие подобного рода удобрений не ослабевает в течение пяти лет и прибавляет урожай зерновых и кормовых культур на 25 – 30 % (4 – 5 т шлама на 1 га). 

    Нефелин – один из компонентов аппатито-нефелиновых  руд, являющихся сырьем для химической промышленности, содержит, помимо фосфора, алюминий, натрий, калий, титан, железо, стронций, редкие металлы. Нефелин является альтернативой бокситам, сырью для алюминиевой промышленности и месторождения которых постоянно истощается. Из попутных продуктов, получающихся при  переработке нефелиновых руд в глинозем, можно производить и уже производятся содовые продукты и цемент. Существуют два основных способа переработки нефелиновых руд [11]:

    Спекательно-щелочной способ. Сущность метода заключается в высокотемпературном разложении нефелина в присутствии СаСО3. При этом содержащиеся в нефелине глинозем  щелочи образуют алюминаты Na и K, а кремнезем – дикальциевый силикат. Путем дальнейшей переработки получаемых продуктов обеспечивается получение глинозема, содо-поташного раствора, используемого для производства соды и поташи, и нефелинового шлама – сырья для производства цемента.

    Гидрохимический способ. Данный метод основан на автоклавном разложении нефелина концентрированным раствором едкой щелочи в присутствии извести. В результате образующиеся из алюминатов и силикатов щелочные алюмосиликаты остаются в осадке. Процесс оптимально протекает при 260 – 300° С и 3 МПа. Однако гидрохимический способ переработки нефелиносодержащего сырья требует большое количество щелочи, высокий расход тепла и повышенного водного баланса.

    На  пути к созданию экологичной и  малоотходной металлургии зарубежными государствами был накоплен немалый опыт. В разных странах мира применяются различные методы утилизации и переработки отходов металлургии: в автодорожном и железнодорожном строительстве, в сельском хозяйстве в качестве удобрений, в строительной промышленности и других отраслях.

    Несомненное лидерство в этом принадлежит  Японии. При выплавке марганцевых  сплавов образуется большое количество газов (700 м3/г углеродистого ферромарганца), часть которого (СО2) весьма эффективно (на 84 %) используется в качестве источника тепла сушки сырых материалов, что позволяет сэкономить до 16 млн. т в год мазута. Доменный газ применяется для производства метанола, этанола, этиленгликоля, этилена, пропилена, уксусной кислоты, коксовый газ – в производстве метанола и аммиака.[11]

    Ярким примером использования безотходной  технологии в нашей стране может  служить Пикалевский глиноземный  комбинат.

3.2. Топливно-энергетический комплекс

    ТЭК – один из крупнейших загрязнителей  окружающей среды твердыми, жидкими  и пылевидными отходами, т.к. сам процесс производства тепловой или электрической энергии подразумевает сжигание органического топлива с неизбежным образованием токсичных компонентов. Кроме этого с отходами добычи и обогащения топлива теряется большое его количество.

    Существует  классификация на основе литологического  состава отходов добычи и обогащения углей:

  • Глинистые (> 50 % глин);
  • Песчаные (> 40 %  песчаника и кварцита);
  • Карбонатные (> 20 % карбонатов).

    Кроме этого отходы различаются по физико-химическим и теплофизическим свойствам, по характеристике органического вещества и др.

    Породы  вскрыши, отличающиеся высоким содержанием  минеральных веществ, могут быть использованы для энергетических целей  после предварительного обогащения с получением кондиционного по зольности продукта. Породы вскрыши могут применяться как закладочный материал для рекультивации земель, а шахтные – для закладки  шахтного пространства. Возможно применение даже без селективной обработки слагающих литологических разностей как сырье для производства пористых заполнителей для легких бетонов, керамических материалов, при строительстве дамб и других сооружений, кислотостойких мастик, в строительстве домов и дамб, в фильтровых установках [11].

    Шахтные породы часто содержат большое число  микроэлементов, необходимых для питания растений, поэтому могут применяться в качестве удобрений почв, разбалансировка которых происходит в результате интенсификации и химизации сельского хозяйства [11].

    Отходы  углеобогащения, содержащие большое  количество горючей массы, могут быть подвергнуты дополнительному обогащению с получением кондиционного по зольности твердого топлива или непосредственно использованы для сжигания и газификации. Возможно сжигание высокозольных отходов углеобогащения в пылеватом состоянии на электростанциях, в том числе на крупных, при этом уменьшаются выбросы  SOX и NOX в окружающую среду. В некоторых зарубежных странах нашли применение плазменные печи для переплавки легированных отходов и восстановительной плавки. Для этой цели разработаны и используются разнообразные генераторы плазмы и дуговые плазменные горелки разной мощности, где возможно восстановление руд отходами углеобогащения и выработка некоторого количества электроэнергии за счет отходящих газов.

    В результате гравитационной сепарации  некоторых углей можно определить высокозольные фракции, в которых содержатся ряд микроэлементов (Ag, As, Cd, Mn, Mo, Ni, Pb и другие) в 1.3 – 1.4 раза выше, чем в исходных углях. Бóльшая часть микроэлементов может быть извлечена из продуктов термической обработки или обогащения твердого горючего.

    С помощью биологических методов  можно извлекать из углей и  части угольных отходов пиритную и органическую серу, различные металлы (Mn, Ni, Co, Zn, Ca, Al, Cd) золу, кислород- и азотсодержащие соединения. Очистка угля может осуществляться за 6 суток на 93 % при применении термофильных бактерий и 18 суток мезофильными бактериями.[11]

    В связи с грядущим  в ближайшие  десятилетия истощением запасов  угля, нефти, природного газа возникла потребность поиска менее дорогих, но технологически более простых в переработке и использование. Важнейшим, в связи с этим, источником для восполнения энергобаланса, производства чистых энергосистем и многих, остро необходимых стране продуктов становятся горючие сланцы. Из сланцев можно получить [11]: мазут, автомобильный бензин, газ для бытовых нужд, жидкое синтетическое топливо.

3.3. Химический комплекс

    Из  всех видов минерального сырья особое место занимают агрохимические фосфорсодержащие руды, от которых в значительной мере зависит плодородие почв, а с учетом истощения богатого фосфором сырья важнейшей проблемой является эффективное использование полезных компонентов недр и руды.

    Значение  фосфора в природе крайне важно. Минеральный фосфор входит в состав костной ткани позвоночных и  наружных скелетов ракообразных и моллюсков. Фосфор присутствует в мягких тканях растений и животных. Фосфорсодержащие органические соединения обеспечивает превращение химической энергии в механическую энергию мышечных тканей. Этот элемент входит в состав нуклеиновых кислот, регулирующих наследственность и развитие организмов.

    Производство  фосфорных минеральных удобрений  – главная сфера применения фосфатного сырья. Более полная выемка попутных полезных компонентов из фосфоритов и апатитов путем флотации, т.е. использовать различную плотность материалов относительно плотности воды.

    Один  из важнейших попутных компонентов  апатитовых руд  – нефелин1.

    Еще  один  минерал, имеющий большое  значение и содержащийся в апатитовых рудах, – сфен. В состав данного  соединения входит титан (CaTiSiO4(O,OH,F)), а диоксид титана – важный компонент при производстве лакокрасочных изделий. Перспективность сфена как сырья связана с большими запасами этого минерала в нашей стране (главным образом в Хибинах [11]) и, с учетом комплексной переработки апатитовых руд, низкой себестоимостью содержащегося в них TiO2.

    В настоящее время существуют различные  технологические системы и способы  переработки сфенового концентрата: хлорная; азотнокислая; сернокислая; спекание с поваренной солью, кремнефторидом, сульфатом аммония. Однако наиболее приемлемой является сернокислая технология, когда как другие методы очень сложны и не получили промышленного развития.

    Оптимально  сфеновый концентрат разлагается при  использовании 50 – 55 %-ой серной  кислоты  с  расходом  1.5  т  на 1 т концентрата и протекании процесса в течение 20 – 30 часов и в температурных условиях 130° С. В результате получается 1 т товарного TiO2  на каждые 4 т сфенового концентрата и 6 т серной кислоты.

    В нашей стране и за рубежом проводятся работы по получению из горючих сланцев битумов, масляных антисептиков для древесины, ядохимикатов, серы, гипосульфита, бензола, лаков, клеев, дубителей, шлаковой ваты, матов для строительной индустрии, портландцемента и многого другого. [11]

    В химической промышленности также используются отходы производства диметилтереоргалата для синтеза алкидных полимеров. Отходы катализаторов производства мономеров используется в строительных лакокрасочных пигментах. Отходы гидроксилсодержащих соединений от производства ксилита  идут на изгототовление простых и сложных олигоэфиров – компонентов лакокрасочных материалов, отходы производства меланина – ПАВ-диспергаторов. Катализаторы алкинирования бензола изготавливаются из аллюминесодержащих отходов кабельной промышленности. Отходы производства капролактама – компоненты смазочных материалов или пластифицирующие добавки к бетонным смесям. Из катализаторов нефтепереработки выделяются металлические компоненты: Mo(SO4)3, VO5, тригидрит оксида алюминия, Ni-Mo концентрат и др. Возможно использование кислых гудронов для выработки из воды аммонийных солей, пригодных для использования, как в пресной воде, так и в морской. Кислые гудроны можно применять совместно с нефтяными шлаками в дорожном и коммунальном строительстве.

 

ЗАКЛЮЧЕНИЕ

    Подводя итог всему вышесказанному, можно сказать, что, несмотря на длительность изучения настоящей проблемы, утилизация и  переработка  отходов  промышленности  по-прежнему не ведется на должном уровне.

    Острота проблемы, несмотря на достаточное  количество путей решения, определяется увеличением уровня образования и накопления промышленных отходов. Усилия зарубежных стран направлены, прежде всего, на предупреждение и минимизацию образования отходов, а затем на их рециркуляцию, вторичное использование и разработку эффективных методов окончательной переработки, обезвреживания и окончательного удаления, а захоронения только отходов, не загрязняющих окружающую среду. Все эти мероприятия, бесспорно, уменьшают уровень негативного  воздействия отходов промышленности на природу, но не решают проблему прогрессирующего их накопления в окружающей среде и, следовательно, нарастающей опасности проникновения в биосферу вредных веществ под влиянием техногенных и природных процессов. Разнообразие продукции, которая при современном развитии науки и техники может быть безотходно получена и потреблена, весьма ограничено, достижимо лишь на ряде технологических цепей и только высокорентабельными отраслями и производственными объединениями.

    Несмотря  на длительную ориентацию промышленности нашей страны на ресурсосберегающие технологии, отображало это скорее экономические цели производства, нежели предотвращение вредного воздействия на природу. В СССР на уровне Госснаба была разработана система сбора вторичных ресурсов: макулатуры, текстиля, пиломатериалов, битого стекла, пищевой кости, металлолома и др. – главным образом бытовых отходов.

    Ранее считавшееся перспективным способом снижения загрязнения окружающей среды  сжигание токсичных бытовых и  промышленных отходов, при котором  исключение загрязнения окружающей среды высокотоксичными веществами, возможно только на крайне специальных дорогостоящих заводах, не окупающих в результате своей деятельности затраты на строительство и эксплуатацию. Движение к минимизации негативного воздействия промышленных отходов на окружающую среду следует осуществлять по двум магистральным направлениям:

  • Технологическое – повышение экологической безопасности производства;
  • Экозащитное – стабилизация и изоляция опасных отходов от природной среды.

    Многостороннее и глубокое решение проблемы утилизации и переработки промышленных отходов – длительный и кропотливый процесс, которым предстоит заниматься ряду поколений ученых, инженеров, техников, экологов, экономистов, рабочих разного профиля и многих других специалистов. 

 

СПИСОК ЛИТЕРАТУРЫ

  1. Багрянцев Г.И., Черников В.Е. Термическое обезвреживание и переработка промышленных и  бытовых отходов // Муниципальные  и промышленные отходы: способы обезвреживания и вторичной переработки - аналитические  обзоры. Новосибирск, 2008, серия Экология.
  2. Байкулатова К.Ш. Вторичное сырье - эффективный резерв материальных ресурсов. Алма-Ата, Казахстан, 2009.
  3. Безотходная технология. М., Знание, 2010.
  4. Бернадинер М.Н., Шурыгин А.П. Огневая переработка и обезвреживание промышленных отходов. М., Химия, 2008.
  5. Вредные вещества в промышленности. Л., Химия, 2009.
  6. Глоба В.Н., Яковлев Е.И., Борисов В.В. Строительство и эксплуатация подземных хранилищ. Киев: Будивельник, 2007.
  7. Дмитриев В.И., Коршунов Н.Н., Соловьев Н.И. Термическое обезвреживание отходов хлорорганических производств // Химическая технология, 2010, №5.
  8. Избавление биосферы от токсичных отходов. Проблемы и пути ее эффективного решения. Соликамск, 2010.
  9. Инструкции о порядке единовременного учета образования и обезвреживания токсичных отходов. М, 2010.
  10. Комплексное использование сырья в промышленности. Хайбулина Н.Е. Челябинск, Южноуральское книжное издательство, 2009.
  11. Комплексное использование сырья и отходов. Равич Б.М., Окладников В.П., Лыгач В.Н. и др. М., Химия, 2007.
  12. Крапивина С.А. Плазмохимические технологические процессы. Л., Химия, 2008.

Информация о работе Современные способы переработки и утилизации промышленных отходов реферат скачать бесплатно