Шаровая молния

Автор: Пользователь скрыл имя, 12 Февраля 2012 в 06:37, реферат

Краткое описание

В представленной работе будет идти речь об одном из самых интересных – с точки зрения физики – явлений природы – шаровой молнии. Шаровой молнией принято называть светящиеся образования, по форме напоминающие шар. Это явление возникает иногда во время грозы в воздухе, чаще всего, вблизи поверхности. Всегда сопровождаясь обычной молнией, шаровая молния сильно отличается от неё и по своему поведению, и по внешнему виду. В отличие от обычной (линейной) молнии, шаровая не сопровождается громом, она практически бесшумна.

Файлы: 1 файл

Шаровая молния - реферат.doc

— 240.50 Кб (Скачать)

     В данной работе на основе ряда положений о том, что: внутри шаровой молнии существует резонансное коротковолновое электромагнитное излучение (длинна волны l соизмерима с ее геометрическими размерами d наиболее устойчивыми состояниями движения в природе являются резонансные ], характер которых един и не зависит от природы взаимодействующих тел неустойчивые состояния в статике могут стать устойчивыми в динамике (ловушки для заряженных частиц, перевернутый маятник П.Н. Капицы вне и в зонах параметрического резонанса, системы из одного, двух и более намагниченных гироскопов при резонансе)

10. Гипотеза квантовой природы шаровой молнии

 

     Явления, сопровождающие разрушение ШМ, такие как схлопывание, взрыв, большие токи, освобождение тепловой энергии, сохраняющейся при относительно длительном существовании ШМ, – все это принадлежности некой конструкции, долженствующие проявляться естественным образом при соответствующих предпосылках в атмосфере Земли. Анализируя свойства ШМ и характеристики электрических и магнитных полей Земли способом моделирования физических процессов, происходящих при разрядах ЛМ в атмосфере, можно предложить новую гипотезу природы ШМ.

     Отклонение ЛМ от вертикального положения наблюдается регулярно. Происходит это из-за того, что проводимость атмосферы неравномерна, поскольку неоднороден химический состав, плотность и влажность воздуха. Можно также часто видеть, как от основного канала молнии отрываются боковые рукава, которые почти мгновенно исчезают в атмосфере. Некоторые из них попадают в благоприятные для появления ШМ условия. Отклонения ЛМ могут произойти и при ударе ее о поверхность Земли, дерево или опору ЛЭП. Что же при этом происходит?

     При отклонении ЛМ от вертикального положения в восточном или западном направлениях она попадает под влияние скрещенных магнитного и электрического полей Земли. Электроны плазмы в канале молнии, вращаясь под действием магнитного поля по ларморовскому радиусу (под действием сил Лоренца), одновременно выталкиваются электрическим полем из плазмы за пределы облака положительных ионов. Если при этом силы электростатического притяжения между ионами и электронами оказываются равными центробежным, то электроны попадают на устойчивые квантованные (с квазиклассическим приближением) орбиты вокруг облака ионов и сжимают его в магнитной ловушке.

     Такое долгоживущее образование может иметь большой спектр величин запасенной энергии (в нескольких ее видах). Самую существенную ее часть составляет потенциальная электростатическая энергия разделенных зарядов.

     Посмотрим, как согласуется предполагаемая модель ШМ с условиями в атмосфере Земли. Силовые линии магнитного поля Земли направлены с севера на юг. Магнитная индукция его колеблется в пределах 3·10–5...7·10–5 Тл. Напряженность электрического поля, направленного вертикально – от 2,5 до 130 В/м и может достигать во время грозы гораздо больших величин.

     Рассчитывая условие равновесия оболочек на орбитах для наиболее распространенного случая наблюдаемой ШМ диаметром 10 см, получим следующие данные: скорость электронов на орбитах – 80м/с (сравните, скорость электронов в канале ЛМ – ≤105 м/с); магнитная индукция для получения ларморовского радиуса 5см при скорости электронов 80м/с должна быть 10–8 Тл (сравните, магнитное поле Земли – 3·10–5 Тл). Таким образом, для образования ШМ необходимо, чтобы скорость электронов в ЛМ весьма замедлилась, а магнитная индукция Земли была бы сильно ослаблена.

     Замедление скорости электронов вполне возможно при отклонении рукава ЛМ от основного канала. Что же касается ослабления магнитной индукции, то оно может произойти лишь вблизи канала ЛМ, как результат влияния ее вихревого магнитного поля, поскольку она представляет собой ток, который может достигать величины 4·104 А.

     Расчет также показывает, что для образования одной электронной оболочки ШМ (принятой величины) необходимо примерно 2·109 электронов (исходя из принципа Паули). А для того, чтобы конструкция ШМ была устойчива к магнитному полю Земли, таких оболочек необходимо около 103. В этом случае ионизация плазмы составит всего около 1%, что вполне реально при таких температурах.

     Состояние материи, которое достигается разделением зарядов и образованием устойчивой конфигурации с движением электронов в оболочках вокруг облака положительных ионов, уже не может называться плазмой, поскольку нарушена ее квазинейтральность. Вместе с тем, при разрушении ШМ вещество вновь проходит состояние плазмы. При этом выделяется тепловая энергия, которая была законсервирована работой электрического поля в потенциальной энергии разделения зарядов и в движении электронов на орбитах.

     Законсервированная энергия магнитного и электрического полей в ШМ может выделяться при ее разрушении не только в виде тепла, но и еще в двух уникальных проявлениях.

     Так, если толщина (количество) электронных оболочек значительна, то связь наружных оболочек с "ядром" из ионов ослаблена, и они могут инициировать мощный импульс тока, соприкоснувшись с проводником. При этом ШМ сначала частично разрядится, а затем заберет этот заряд обратно. При полном ее разрушении также возникает двойной импульс тока: разряжается сначала оболочка из электронов, а затем ионы из "ядра" забирают эти электроны назад и рекомбинируют с выделением тепла.

     Кроме этого, ШМ может "работать" и как вакуумная бомба. Дело в том, что начальная температура атомов и ионов внутри оболочки из электронов, служащей непроницаемым барьером для атомов и электронов как изнутри, так и снаружи, не может из-за потерь на излучение долго сохраняться. Разряжение, которое появляется при этом внутри оболочки, увеличивается до тех пор, пока она не будет раздавлена разницей давлений и не схлопнется (это и определяет время жизни ШМ). Если толщина оболочки небольшая, то схлопывание произойдет мягко, без особых эксцессов (как в большинстве наблюдаемых случаях), но если эта толщина значительная, то схлопывание приобретает характер взрыва, вызывая сильные разрушения. Взрыв происходит на фоне импульса тока на проводник и выделения тепловой энергии рекомбинации ионов.

     Необходимо указать на возможное разнообразие химического состава ШМ (на что явственно указывает цвет излучения). Скорость электронов в ЛМ колеблется в широком диапазоне, следовательно, и температура плазмы также имеет различные значения, что определяет, в свою очередь, атомы каких газов могут участвовать в образовании ШМ.

     Итак, поскольку для ее появления требуются особые предпосылки в атмосфере Земли, шаровая молния, во-первых, достаточно редкое явление; и, во-вторых, не получена (хотя бы случайно) в лаборатории. Последнее осуществимо лишь при создании ряда необходимых условий, а именно:

     Наличие ослабленного магнитного поля поперек движения плазмы сообразно величине, рассчитываемой ШМ (по количеству атомов и молекул при предполагаемой температуре);

     создание сильного электрического поля, скрещенного с магнитным и с направлением движения плазмы;

     удлинение времени жизни плазмы (например, с помощью перезарядок на многоэлектронных ионах), чтобы оно было больше времени дрейфа электронов до попадания их в оболочку под действием электрического поля;

     создание движущейся плазмы в скрещенных магнитном и электрическом полях. Для этого необходима специальная лабораторная установка (например, по типу описанной в книге В.Г. Чейса и Г.К. Мура "Взрывающиеся проволочки" М. 1963 ) и легированный материал (металл с примесями), имеющий малую работу плавления, испарения и ионизации.

11. Опасность шаровой молнии

 

     Конечно, встреча с шаровой молнией несет в себе определенную опасность, и этому есть немало подтверждений. Однако чаще всего этот тип молнии не приносит никакого ущерба для жизни или здоровья свидетелей происшествия. Как показал проведенный опрос, лишь пять из полутора тысяч случаев, описанных в письмах закончились смертельным исходом.

     Как правило шаровая молния проходит мимо проводящих объектов, в том числе и мимо человека. Температура на поверхности молнии примерно равна обычной комнатной температуре, а если и превышает ее, то ненамного (не более чем на 100 К). Это следует из того, что некоторые случаи контакта с молнией не приводили ни каким травмам. В других случаях прикосновение давало ожоги, хотя и болезненные, но далеко не смертельные. Внутри шаровой молнии температура выше, чем на ее поверхности, однако скорее всего она не превышает 300...400 ° С.

     Как следует из вышесказанного, не стоит преувеличивать опасность, которую несет в себе шаровая молния. Практика показывает, что линейная молния является гораздо более опасным природным явлением.  

12. Защита от шаровой молнии

 

     Когда ученые изобрели молниеотвод и испытали его (ценой жизни нескольких физиков), эйфория от кажущейся победы над силами Природы была столь велика, что в честь победителей устраивались пышные приемы и торжественные балы. Многие парижские модницы немедленно включили в состав своего наряда или вплели в прически самые настоящие металлические стержни-молниеотводы, а люди просвещенные, профессура и интеллигенция принялась носить стальную проволоку в карманах пиджаков или заменила свои традиционные деревянные тросточки на железные.

     Тогда у грамотных людей вера в молниеотвод была выше, чем у колдунов вера в силу талисманов и оберегов. Пройдет полвека или век, стальные стержни вкопают в землю не только в центрах университетских городов, но и на заводах, фабриках, вдоль дорог и даже на богом забытых фермах и хуторах. В некоторых странах, например в Сингапуре, где 200 грозовых дней в году, переносные молниеотводы в виде треножников (производства Австралии) даже приняты на вооружение в армии ["New Scientist" N 2096, 1997].

     Произошла ли полная победа?! За последнее столетие количество жертв молний имеет неуклонную тенденцию к росту. Например, только во Франции, где ежегодно регистрируется около миллиона ударов молний, гибнет несколько десятков людей и около 10 тысяч коров ["НЖ" 1995, N 2, с.89]... В США в год в среднем гибнет от молний около 80 человек, в небольшом Зимбабве - до 160 (там однажды за месяц погибло 89 человек). В год на Земле, по одним данным, от молний гибнет около тысячи человек; по другой,- линейные молнии попадают примерно в 400 человек, из которых примерно половина гибнет.

     В 1966 году в Вологодской области на берегу реки молния ударила в отару овец, сбившихся от страха в одну большую кучу, и убила всех - всего 101 овцу... 23 декабря 1975 года молния установила свой собственный рекорд - одним ударом убила сразу 21 человека, произошло это после прямого попадания в хижину в Чинамаса-Краэл, близ Матари в Зимбабве...

     Кстати, при такой точности попадания в человека (на одного убитого "тратится" около 10 тысяч ударов) молнии вполне можно сравнить с пулями (которых, например, во время позиционных войн тратится на одного убитого противника от 1 до 100 тысяч). Словно бы вся наша Земля - это один большой тир или простреливаемая насквозь прифронтовая полоса.

     Возможно, без молниеотводов количество жертв было бы еще больше, но защитить нас в полной мере они так и не смогли. Точнее говоря, они прекрасно защищают нас от "электрических пробоев из облаков", то есть от того, чем считали молнию после открытия электричества. "Молния - разряд тока мощностью до 3 млрд.Дж, движущийся из облака вниз со скоростями 160-1600 км/с (и 140000 км/с - с половинной скоростью света движется иногда обратно с земли в облака) по ионизированному каналу воздуха с температурой плазмы до 30 000 градусов (в 5 раз выше, чем на Солнце), с диаметром канала 1,27 см, окруженной 3-6-метровой короной, длиной от 90 м до 32 км и сопровождающийся звуковой ударной волной (громом), слышимой иногда на расстоянии до 29 км..." - такие статистические сведения накопила о молниях всезнающая наука.

     Защититься от линейной молнии, как показала практика, можно пытаться, эффективность простого громоотвода не слишком высока, но она снижает риск едва ли не на порядок. Но и этот громоотвод не способен обезвредить шаровые молнии, никто никакой гарантии от поражения молнией шаровой молнией никогда не мог дать. Промысел божий – это единственное утешение и успокоение для всех, кто был озадачен этой проблемой!

     Защиты нет или почти нет: шаровая молния найдет жертву (если захочет, конечно, к счастью, она далеко не всегда кровожадна) где угодно и когда угодно, она пройдет сквозь стены и преграды, она подкрадется абсолютно незаметно с любого направления...

     Делалось несколько попыток создания эффективной защиты. Большинство подобных проектов – не удались. Впрочем, надежда пока остается, и проекты продолжают появляться.

     В конце 1990-х годов новый молниеотвод, который способен обезвредить шаровые молнии, был разработан ведущим инженером Московского института теплотехники Борисом Игнатовым. Что касается нового "шаромолниеотвода", то принцип его действия основан на том, что шаровая молния всегда несет магнитное поле (согласно теории Игнатова), и ядро шаровой молнии представляет собой мощный магнитный диполь. Перемещаясь в окрестностях обычного постоянного магнита, установленного на уже существующем громоотводе, она обязательно должна к нему притянуться. Для этого характерная длина постоянного магнита должна быть на 10-12 порядков больше длины диполя шаровой молнии. При столкновении молнии с одним из полюсов магнита ее электрический заряд стечет в землю, и шаровая молния без взрыва прекратит свое существование, подчеркнул ученый. Устройство Б.Игнатова запатентовано и существует пока только в нескольких экземплярах. "Если из таких молниеотводов соорудить сеть, то ни шаровые, ни линейные молнии перестанут быть опасными для населения и технологических конструкций". Так утверждает изобретатель, но увы, на практике его "шаромолниеотвод" так и не был эффективно испытан.

Информация о работе Шаровая молния