Расчет защиты ионизирующего излучения

Автор: Пользователь скрыл имя, 07 Ноября 2011 в 17:28, курсовая работа

Краткое описание

С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана. Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь.

Оглавление

Введение………………………………………………………………….3
Понятие ИИ. Основные методы обнаружения ИИ………………………………………………………………………....4
Гамма-излучение……………………………………………………..…..7
Расчет защиты от источника гамма-излучения (кобальт-60) ..….12
Заключение…………………………………………………………………..
Список литературы…………………………………………………………16

Файлы: 1 файл

образец кур_РБ.doc

— 157.50 Кб (Скачать)

    В межзвездном пространстве гамма-излучение может возникать в результате соударений квантов более мягкого  длинноволнового, электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передает свою энергию электромагнитному излучению и видимый свет превращается в более жесткое гамма-излучение.

    Аналогичное явление может иметь место  в земных условиях при столкновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в γ-квант. Таким образом, можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.

    Гамма-излучение  обладает большой проникающей способностью, т.е. может проникать сквозь большие толщи вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии гамма-излучения с веществом, - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. При фотоэффекте происходит поглощение γ-кванта одним из электронов атома, причём энергия γ-кванта преобразуется ( за вычетом энергии связи электрона в атоме ) в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна пятой степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. Таким образом, фотоэффект преобладает в области малых энергии γ-квантов ( £100 кэВ ) на тяжелых элементах ( Pb, U).

    При комптон-эффекте происходит рассеяние  γ-кванта на одном из электронов, слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте γ-квант не исчезает, а лишь изменяет энергию ( длину волны ) и направление распространения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение - более мягким (длинноволновым). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1см3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышают энергию связи электронов в атомах. Так, в случае Pb вероятность комптоновского рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии ~ 0,5 МэВ. В случае Al комптон-эффект преобладает при гораздо меньших энергиях.

    Если энергия γ-кванта превышает 1,02 МэВ, становится возможным процесс образования электрон-позитроновых пар в электрическом поле ядер. Вероятность образования пар пропорциональна квадрату атомного номера и увеличивается с ростом hν. Поэтому при hν ~10 МэВ основным процессом в любом веществе  оказывается образование пар.

    Обратный  процесс аннигиляция электрон-позитронной  пары является источником гамма-излучения.

    Для характеристики ослабления гамма-излучения  в веществе обычно пользуются коэффициентом  поглощения, который показывает, на какой толщине Х поглотителя интенсивность I0 падающего пучка гамма-излучение ослабляется в е раз:

    I=I0e-μ0x

    Здесь μ0 – линейный коэффициент поглощения гамма-излучения. Иногда вводят массовый коэффициент поглощения, равный отношению μ0 к плотности поглотителя.

    Экспоненциальный  закон ослабления гамма-излучения  справедлив для узкого направления  пучка гамма-лучей, когда любой  процесс, как поглощения, так и  рассеяния, выводит гамма-излучение  из состава первичного пучка. Однако при высоких энергиях процесс прохождения гамма-излучения через вещество значительно усложняется. Вторичные электроны и позитроны обладают большой энергией и поэтому могут, в свою очередь, создавать гамма-излучение благодаря процессам торможения и аннигиляции. Таким образом, в веществе возникает ряд чередующихся поколений вторичного гамма-излучения, электронов и позитронов, то есть происходит развитие каскадного ливня. Число вторичных частиц в таком ливне сначала возрастает с толщиной, достигая максимума. Однако затем процессы поглощения начинают преобладать над процессами размножения частиц, и ливень затухает. Способность гамма-излучения развивать ливни зависит от соотношения между его энергией и так называемой критической энергией, после которой ливень в данном веществе практически теряет способность развиваться.

    Для изменения энергии гамма-излучения  в экспериментальной физике применяются гамма-спектрометры различных типов, основанные большей частью на измерении энергии вторичных электронов. Основные типы спектрометров гамма-излучения: магнитные, сцинтилляционные, полупроводниковые, кристалл-дифракционные.

    Изучение  спектров ядерных гамма-излучений  дает важную информацию о структуре  ядер. Наблюдение эффектов, связанных  с влиянием внешней среды на свойства ядерного гамма-излучения, используется для изучения свойств твёрдых тел.

    Гамма-излучение  находит применение в технике, например для обнаружения дефектов в металлических  деталях – гамма-дефектоскопия. В радиационной химии гамма-излучение  применяется для инициирования химических превращений, например процессов полимеризации. Гамма-излучение используется в пищевой промышленности для стерилизации продуктов питания. Основными источниками гамма-излучения служат естественные и искусственные радиоактивные изотопы, а также электронные ускорители.

    Действие  на организм гамма-излучения подобно  действию других видов ионизирующих излучений. Гамма-излучение может  вызывать лучевое поражение организма, вплоть до его гибели. Характер влияния  гамма-излучения зависит от энергии  γ-квантов и пространственных особенностей облучения, например, внешнее или внутреннее. Относительная биологическая эффективность гамма-излучения составляет 0,7-0,9. В производственных условиях (хроническое воздействие в малых дозах) относительная биологическая эффективность гамма-излучения принята равной 1. Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков) и растений.

    Современные возможности лучевой терапии расширились в первую очередь за счёт средств и методов дистанционной гамма-теропии. Успехи дистанционной гамма-теропии достигнуты в результате большой работы в области использования мощных искусственных радиоактивных источников гамма-излучения (кобальт-60, цезий-137), а также новых гамма-препаратов.

    Большое значение дистанционной гамма-теропии  объясняется также сравнительной доступностью и удобствами использования гамма-аппаратов. Последние, так же как и рентгеновские, конструируют для статического и подвижного облучения. С помощью подвижного облучения стремятся создать большую дозу в опухоли при рассредоточенном облучении здоровых тканей. Осуществлены конструктивные усовершенствования гамма-аппаратов, направленные на уменьшение полутени, улучшение гомогенизации полей, использование фильтров жалюзи и поиски дополнительных возможностей защиты.

    Использование ядерных излучений в растениеводстве открыло новые, широкие возможности для изменения обмена веществ у сельскохозяйственных растений, повышение их урожайности, ускорения развития и улучшения качества.

    В результате первых исследований радиобиологов было установлено, что ионизирующая радиация – мощный фактор воздействия на рост, развитие и обмен веществ живых организмов. Под влиянием гамма-облучения у растений, животных или микроорганизмов меняется слаженный обмен веществ, ускоряется или замедляется (в зависимости от дозы) течение физиологических процессов, наблюдаются сдвиги в росте, развитии, формировании урожая.

    Следует особо отметить, что при гамма-облучении  в семена не попадают радиоактивные  вещества. Облученные семена, как и  выращенный из них урожай, нерадиоактивны. Оптимальные дозы облучения только ускоряют нормальные процессы, происходящие в растении, и поэтому совершенно необоснованны какие-либо опасения и предостережения против использования в пищу урожая, полученного из семян, подвергавшихся предпосевному облучению. Ионизирующие излучения стали использовать для повышения сроков хранения сельскохозяйственных продуктов и для уничтожения различных насекомых-вредителей. Например, если зерно перед загрузкой в элеватор пропустить через бункер, где установлен мощный источник радиации, то возможность размножения насекомых-вредителей будет исключена и зерно сможет храниться длительное время без каких-либо потерь. Само зерно как питательный продукт не меняется при таких дозах облучения. Употребление его для корма четырех поколений экспериментальных животных не вызвало каких бы то ни было отклонений в росте, способности к размножению и других патологических отклонений от нормы.  Защититься от воздействия гамма-излучения сложнее, чем от воздействия альфа- и бета-частиц. Проникающая способность его очень высока, и гамма-излучение способно насквозь пронизывать живую человеческую ткань. Нельзя однозначно утверждать, что вещество некоторой толщиной полностью остановит гамма-излучение. Часть излучения будет остановлена, а часть его - нет. Однако, чем более толстый слой имеет защита и чем больше удельный вес и атомный номер вещества, которое используется в качестве защиты, тем более она эффективна. Толщина материала, требуемого, чтобы уменьшить излучение в два раза - называется слоем половинного ослабления. Толщина слоя половинного ослабления, естественно, изменяется в зависимости от применяемого материала защиты и энергии излучения. Уменьшить мощность гамма-излучения на 50% могут, например, 1 см свинца, 5 см бетона, или 10 см воды.

3. Расчет защиты от источника гамма-излучения (кобальт-60).

    При расчете защиты от рентгеновского и гамма-излучения учитываются следующие данные.

  1. Активность и тип источника, Q, мКи.
  2. Энергия излучения, Е, МэВ.
  3. Расстояние от источника до точки, в которой рассчитывается защита, R, см.
  4. Время работы с источником, t, час.
  5. Мощность экспозиционной дозы на расстоянии, Р, мР/ч.
  6. Учитывается допустимая мощность дозы на рабочем месте       (для категории А она составляет 20 мЗв).
  7. Материал защиты.
  8. Толщина защиты, d, см.

    При определении толщины материала  учитывают кратность ослабления К. Кратность ослабления К – коэффициент, показывающий, во сколько раз уменьшается  мощность дозы от источника различной  геометрии за защитным экраном толщиной d. 
 
 

    Дано:

    Тип источника – Кобальт-60.

Активность, мКи, Q Расстояние, м, R Время работы, час, t Энергия, МэВ
150 1 2 1,27
 

    Рассчитаем  мощность экспозиционной дозы:

    

     =20 (Р/см²)/(ч·мКи)

    R=1 м=100 см 

      

    Рассчитаем  накопленную экспозиционную дозу: 

      
 

    

    Определим толщину защиты из свинца d (см):

    Dн=1,2 мР

    Кратность ослабления излучения составит: 

      

      

    При энергии излучения 1,27 МэВ и при кратности ослабления К=500 табличное значение толщины (Табл. 1) составляет d=113 мм=11,3 см.

    Ответ: для источника ионизирующего излучения (Кобальт-60) с энергией 1,27 МэВ при работе оператора 120 минут (2 часа) необходима толщина свинцовой защиты d=11,3 см (плотность свинца ρ=11,34 г/см³) для того, чтобы за время работы он получил экспозиционную дозу облучения не более Dн=1,2 мР.

    Таблица 1

Информация о работе Расчет защиты ионизирующего излучения