Автор: Пользователь скрыл имя, 21 Февраля 2013 в 20:32, курсовая работа
В процессе жизнедеятельности человек подвергается воздействию различных опасностей, под которыми обычно понимают явления, процессы и т. д. Способные в определенных условиях наносить ущерб здоровью человека непосредственно или косвенно, т.е. вызывать нежелательные различные процессы. В 1896 г. французский физик А.Беккерель открыл явление радиоактивного излучения. Оно положило начало изучения и использования ядерной энергии.
Альфа-частицы имеют незначительный пробег (данные пробега альфа-частиц приведены в зависимости от энергии.):
· в воздухе - до 11 см;
· в биологических тканях - 30-130 мкм;
· в алюминии - 16-69 мкм.
Бета-частицы обладают большей проникающей и меньшей ионизирующей способностью, чем альфа-частицы.
Пробег бета-частиц составляет:
· в воздухе несколько метров;
· в биологических тканях – несколько сантиметров;
· в алюминии – несколько миллиметров.
Важнейшим свойством
рентгеновского излучения является
его большая проникающая
Источниками ИИ могут быть природные и искусственные радиоактивные вещества, различного рода ядерно-технические установки, медицинские препараты, многочисленные контрольно-измерительные устройства (дефектоскопия металлов, контроль качества сварных соединений). Они используются также в сельском хозяйстве, геологической разведке, при борьбе со статическим электричеством и др.
Любой источник излучения характеризуется:
Специалисты и другие работники могут сталкиваться с ионизирующими излучениями при выполнении работ на ускорителях заряженных частиц (синхрофазотронах), а также на атомных электростанциях, урановых рудниках и др.
Некоторые характеристики основных радиоактивных элементов представлены в таблице.
Название элемента |
Характеристика элемента и меры предосторожности |
Период полураспада |
Радон - 222 |
Газ, испускающий альфа-частицы. Постоянно образуется в горных породах. Газ опасен при накоплении в шахтах, подвалах, на 1 этаже. Необходима вентиляция (проветривание) |
3,8 суток |
Ксенон - 133 |
Газообразные изотопы. Постоянно образуются и распадаются в процессе работы атомного реактора. В качестве защиты используют изоляцию. |
5 суток |
Йод - 131 |
Испускает бета-частицы и гамма- |
8 суток |
Криптон - 85 |
Тяжёлый газ, испускающий бета-частицы и гамма излучение. Входит в состав отработанного топливного элемента реактора. Выделяется при их хранении. Защита в использовании изолированных помещений. |
10 лет |
Стронций - 90 |
Металл, испускающий бета-частицы.
Основной продукт деления в |
29 лет |
Цезий - 137 |
Металл, испускающий бета-частицы и гамма-излучение. Накапливается в клетках мышечной ткани. Защита, прежде всего, в контроле пищи и т.п. |
30 лет |
Радий - 226 |
Металл, испускающий гамма-излучение, альфа и бета-частицы. Защита: укрытия и убежища. |
1600 лет |
Углерод -14 |
Испускает бета-частицы. Естественный природный изотоп углерода. Используется при определении возраста археологического материала. |
5500 лет |
Плутоний - 239 |
Испускает альфа-частицы. Содержится в радиоактивных отходах. Защита: качественное захоронение радиоактивных отходов. |
24000 лет |
Калий - 40 |
Испускает бета-частицы и гамма- |
1,3 млрд. лет |
Рентгеновское излучение представляет собой электромагнитное излучение высокой частоты и короткой длиной волны, возникающее при бомбардировке вещества потоком электронов. Важнейшим свойством рентгеновского излучения является его большая проникающая способность. Рентгеновские лучи могут возникать в рентгеновских трубках, электронных микроскопах, мощных генераторах, в выпрямительных лампах, электронно - лучевых трубках и др.
Гамма-излучение относится к электромагнитному излучению и представляет собой поток квантов энергии, распространяющихся со скоростью света. Они обладают более короткими длинами волн, чем рентгеновское излучение. Гамма-излучение свободно проходит через тело человека и другие материалы без заметного ослабления и может создавать вторичное и рассеянное излучение в средах, через которые проходит. Интенсивность облучения гамма-лучами снижается обратно пропорционально квадрату расстояния от точечного источника.
Нейтронное излучение
- это поток нейтральных частиц.
Эти частицы вылетают из ядер атомов
при некоторых ядерных реакциях
Источниками ионизирующих излучений являются радиоактивные элементы и их изотопы, ядерные реакторы, ускорители заряженными частиц и др. рентгеновские установки и высоковольтные источники постоянного тока относятся к источникам рентгеновского излучения.
Здесь следует отметить, что при нормальном режиме их эксплуатации
радиационная опасность незначительна. Она наступает при возникновении
аварийного режима и может долго проявлять себя при радиоактивном заражении местности. Радиоактивный фон, создаваемый космическими лучами (0,3 мЭв/год), дает чуть меньше половины всего внешнего облучения (0,65 мЭв/год), получаемого населением. Нет такого места на Земле, куда бы ни проникали космические лучи. При этом надо отметить, что Северный и Южный полюса получают больше радиации, чем экваториальные районы. Происходит это из-за наличия у Земли магнитного поля, силовые линии которого входят и выходят у полюсов.
Однако более существенную роль играет место нахождения человека. Чем выше поднимается он над уровнем моря, тем сильнее становится облучение, ибо толщина воздушной прослойки и ее плотность по мере подъема уменьшается, а следовательно, падают защитные свойства.
ГОСТ Р 51873-2002 – Источники ионизирующего излучения радионуклидные закрытые. Общие технические требования. Введен в действие в 2003 г. Стандарт распространяется на закрытые радионуклидные источники альфа-, бета-, гамма-, рентгеновского и нейтронного излучений. Не распространяется на образцовые и контрольные источники, а также на источники, активность радионуклидов в которых не превышает минимально значимой, установленной «Нормами радиационной безопасности».
Согласно стандарту источники должны быть герметичными, с установленными классами прочности, допустимых климатических и механических воздействий по ГОСТ 25926 (но не ниже диапазона от -50 до +50оС и влажности не менее 98% при +40оС). Срок службы источника должен быть не менее:
— двух периодов полураспада - для источников с периодом полураспада менее 0,5 года;
— одного периода полураспада (но не менее 1 года) - с периодом полураспада от 0,5 до 5 лет;
— 5 лет - для источников гамма- и нейтронного излучений с периодом полураспада 5 и более лет. Для источников альфа-, бета- и рентгеновского излучений с периодом полураспада 5 и более лет срок службы устанавливают в нормативном документе на конкретный тип источника.
Источники относятся к невосстанавливаемым промышленным изделиям и не подлежат ремонту. При сохранении радиационных параметров в пределах, удовлетворяющих пользователя, сохранении герметичности и отсутствии дефектов допускается продление срока эксплуатации источника. Порядок продления устанавливают органы государственного управления использованием атомной энергией.
4. Дозиметрические величины и единицы измерения радиации.
Во всем мире сейчас действует единая система измерений - СИ (система интернациональная). У нас она подлежит обязательному применению с 1 января 1982 г. К 1 января 1990 г. этот переход надо было завершить. Но в связи с экономическими и другими трудностями процесс затягивается. Однако вся новая аппаратура, в том числе и дозиметрическая, как правило, градуируется в новых единицах.
Активность радионуклида в источнике (А). Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени (dN) к величине этого интервала (dt):
A = dN/dt
Единица активности
в системе СИ - Беккерель (Бк).
Внесистемная единица - Кюри (Ки).
Число радиоактивных ядер N(t) данного изотопа уменьшается со временем по закону:
N(t) = N0 exp(-tln2 / T1/2) = N0 exp(-0.693t / T1/2)
где No - число радиоактивных ядер в момент времени t = 0, Т1/2 -период полураспада - время, в течение которого распадается половина радиоактивных ядер.
Массу m радионуклида активностью А можно рассчитать по формуле :
m = 2.4*10-24 M T1/2 A
где М - массовое число радионуклида, А - активность в Беккерелях, T1/2 - период полураспада в секундах. Масса получается в граммах.
Экспозиционная доза (X). В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц :
X = dQ/dm
Единица экспозиционной
дозы - Рентген (Р). Рентген - это экспозиционная
доза рентгеновского и
-излучения, создающая в 1куб.см воздуха
при температуре О°С и давлении 760 мм рт.ст.
суммарный заряд ионов одного знака в
одну электростатическую единицу количества
электричества. Экспозиционной дозе 1
Р соответствует 2.08*109 пар ионов
(2.08*109 = 1/(4.8*10-10)). Если принять
среднюю энергию образования 1 пары ионов
в воздухе равной 33.85 эВ, то при экспозиционной
дозе 1 Р одному кубическому сантиметру
воздуха передается энергия, равная : (2.08*109)*33.85*(1.6*10-12)
= 0.113 эрг, а одному грамму воздуха : 0.113/
возд = 0.113/0.001293 = 87.3 эрг.
Поглощение энергии ионизирующего излучения
является первичным процессом, дающим
начало последовательности физико-химических
преобразований в облученной ткани, приводящей
к наблюдаемому радиационному эффекту.
Поэтому естественно сопоставить наблюдаемый
эффект с количеством поглощенной энергии
или поглощенной дозы.
Поглощенная доза (D) - основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме :
D = dE/dm
Единица поглощенной дозы - Грей (Гр). Внесистемная единица Рад определялась как поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1 грамм облученного вещества.
Эквивалентная
доза (Н). Для оценки возможного ущерба здоровью
человека в условиях хронического облучения
в области радиационной безопасности
введено понятие эквивалентной дозы Н,
равной произведению поглощенной дозы
Dr, созданной облучением - r и усредненной
по анализируемому органу или по всему
организму, на весовой множитель wr
(называемый еще - коэффициент качества
излучения)
Единицей измерения эквивалентной дозы является Джоуль на килограмм. Она имеет специальное наименование Зиверт (Зв).