Автор: Пользователь скрыл имя, 06 Марта 2013 в 06:42, реферат
Действие ионизирующей радиации на живые организмы интересовало мировую общественность с момента открытия и первых же шагов применения радиоактивного излучения. Это неслучайно, так как с самого начала исследователи столкнулись с его отрицательными эффектами. Так, в 1895 году помощник Рентгена В. Груббе получил радиационный ожог рук при работе с рентгеновскими лучами, а французский ученый А. Беккерель, открывший радиоактивность, получил сильный ожог кожи от излучения радия. Известная ученая Мария Склодовская-Кюри умерла от лучевой болезни, и до сих пор ее могила испускает излучение.
Лучевая болезнь.
Экологический аспект
Распространение в окружающей среде. Действие радиации на человека
Действие на животных
Список литературы
Министерство сельского хозяйства РФ
Государственное образовательное учреждение
высшего профессионального образования
«Санкт-Петербургская Государственная Академия Ветеринарной Медицины»
Кафедра радиобиологии
РЕФЕРАТ
По радиобиологии
на тему:
«Лучевая болезнь»
Санкт-Петербург
2012 год
Содержание:
Список литературы
Лучевая болезнь
Действие ионизирующей радиации на живые организмы интересовало мировую общественность с момента открытия и первых же шагов применения радиоактивного излучения. Это неслучайно, так как с самого начала исследователи столкнулись с его отрицательными эффектами. Так, в 1895 году помощник Рентгена В. Груббе получил радиационный ожог рук при работе с рентгеновскими лучами, а французский ученый А. Беккерель, открывший радиоактивность, получил сильный ожог кожи от излучения радия. Известная ученая Мария Склодовская-Кюри умерла от лучевой болезни, и до сих пор ее могила испускает излучение.
Обеспокоенные такими эффектами, специалисты всего мира создали в конце 20-х годов Международную комиссию по радиационной защите (МКРЗ), которая разрабатывала и разрабатывает правила работы с радиоактивными веществами. Используя рекомендации МКРЗ, национальные эксперты комиссии разрабатывают в странах, так называемых "ядерных державах", национальные нормативы. Помимо МКРЗ этими проблемами занимается еще одна международная организация - Научный Комитет по действию атомной радиации (НКДАР) - United Nations Scientific Committe on the Effects of Atomic Radiation (UNSCEAR), созданного в рамках ООН в 1955 году. Это и неслучайно, так как НКДАР отчитывается перед секретариатом ООН по результатам своей деятельности. Но к сожалению, в настоящее время эти доклады доступны лишь специалистам (в своей полной форме). С другой стороны, НКДАР изначально не предназначена для принятия каких-либо решений, она может только вырабатывать рекомендации. Тем более, что проблемы более экологического характера стали актуальными для общества в целом лишь в последнее время.
Экологический аспект
Как это ни парадоксально, но на самом деле проблема радиационного облучения намного завышена, а где-то доходит и до истерии. Чернобыльская и другие подобные аварии породили особое психосоциальное явление - радиофобию. Самым классическим примером этого явления могут служить такие деятели, как организация "Гринпис" (Greenpeace), в своей деятельности доходящие до экстремизма. При более серьезном и детальном изучении проблемы оказывается, что все намного сложнее, чем просто отрицание или восхваление. По результатам деятельности действительно серьезных организаций, как к примеру НКДАР, было выяснено, что основную часть облучения население получает от естественных источников радиации, и большинство из них таковы, что избежать облучение совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Причем радиоактивное распределение крайне неравномерно в пространстве. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровен, герметизация помещений полеты на самолетах, медицинское обслуживание - все это и многое другое, даже образ жизни, увеличивает уровень облучения за счет естественных источников радиации. Но наиболее весомым из всех естественных источников радиации является невидимый, не имеющий ни вкуса, ни запаха тяжелый газ ( в 7,5 раза тяжелее воздуха) радон. Согласно данным НКДАР ООН, радон вместе со своими дочерними продуктами радиоактивного распада ответственен примерно 3/4 годовой индивидуальной эффективной эквивалентной дозы облучения, получаемой населением от земных источников радиации, и примерно за половину этой дозы от всех естественных источников радиации. В случае же источников техногенного (антропогенного) происхождения следует учитывать, что во-первых, процент техногенного облучения населения всей Земли намного меньше, чем естественного облучения, а во-вторых, здесь уже вмешиваются проблемы несколько иного плана - это к примеру, экономико-энергетическая проблема. То есть других более реальных проектов по эффективной энергоотдаче в настоящее время нет, и атомная энергетика является единственным пока действительно вероятностным и экономически обоснованным вариантом из всех предлагаемых. Хотя это и не оправдывает и не освобождает, конечно же, от огромной ответственности при эксплуатации и разработке подобных проектов. В случае атомных испытаний думается, что излишняя нервозность неуместна тоже. Реалии сегодняшней жизни предполагают активное накопление знаний, а атомные испытания есть необходимый и уникальный инструмент для изучения и познания, к примеру, в геологии (науках о Земле) - на сегодня сейсморазведка не располагает другим равносильным инструментом. Хотя, конечно же, как уже говорилось, с ученых - двойной спрос.
В
аспекте вероятностной
Конечно же, нельзя утверждать, что радиация безопасна, но нельзя кидаться и в другую крайность - радиофобию.
В принципе облучение больного в медицине направлено на исцеление больного, однако нередко дозы оказываются неоправданно высокими: их можно было бы существенно уменьшить без снижения эффективности, причем польза от такого уменьшения была бы весьма существенна, поскольку дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников.
Было бы неверным рассматривать этот вопрос только с медицинской точки зрения, т.е. по отношению только к человеку. Человек является неотъемлемой частью природных экосистем, и помимо него в круговоротах вещества и энергии задействовано множество других живых существ, неживых объектов.
Вообще, техногенные источники радиации представляют собой в отношении окружающей среды (не человека) крайне негативное явление. Неизбежное распространение технологий с применением радиоактивных материалов ведет к все более увеличивающемуся давлению на природные экосистемы.
Распространение в окружающей среде. Действие радиации на человека
К ионизирующим излучениям могут быть отнесены электромагнитные колебания с небольшой длиной волны, рентгеновские лучи и g-излучение, а также потоки a- и b-частиц (электронов), протонов, позитронов, нейтронов и других заряженных и нейтральных частиц. Все они могут стать поражающими факторами как при внешнем, так и при внутреннем облучении человека. В зависимости от проникающей способности этих частиц при внешнем облучении возможно попадание их на кожу или в более глубокие ткани. Наибольшей проникающей способностью обладают a-лучи и рентгеновские, меньшей - b-лучи.
Влиянию
внешнего облучения организм подвергается
только в период пребывания человека
в сфере воздействия излучения.
В случае прекращения радиации прерывается
и внешнее воздействие, а в
организме могут развиваться
изменения - последствия излучения.
В результате внешнего воздействия
нейтронного излучения в
Ионизирующее излучение возникает и при работе с различными радиоактивными веществами - естественными (уран, радий, торий) и изотопами. В радиоактивных изотопах ядра атомов нестабильны. Они обладают способностью распадаться, превращаться в ядра других элементов, при этом меняются их физико-химические свойства. Это явление сопровождается испусканием ядерных излучений и называется радиоактивностью, а сами элементы - радиоактивными. Радиоактивный распад характеризуется выделением энергии в виде g-излучения и корпускулярных частиц a-, b-излучение).
При
работе с радиоактивными веществами
возможно попадание их внутрь организма
через легкие или желудочно-кишечный
тракт, а также через неповрежденную
кожу. Особенно опасны в этом отношении
работы по разработке радиоактивных
руд. Радиоактивное излучение
Попадая в организм, радиоактивные вещества могут заноситься кровью в различные ткани и органы, становясь источником внутреннего излучения. Особую опасность при этом представляют долгоживущие изотопы, которые на протяжении почти всей жизни пострадавшего могут быть источниками ионизирующего излучения. Выводятся радиоактивные соединения в основном через желудочно-кишечный тракт, почки и органы дыхания. Разные виды излучения обладают различными свойствами, неодинаковой биологической активностью и поэтому представляют неодинаковой степени опасность для работающих в контакте с ними. Так, при обслуживании рентгеновских аппаратов в медицинских учреждениях и технических лабораториях на работающих возможно воздействие рентгеновских лучей. Рентгеновские лучи являются электромагнитным излучением с очень короткой длиной волны и обладают высокой проникающей способностью.
Ионизирующему
излучению могут подвергаться работающие
с рентгеновскими и g-лучами при осуществлении
g-дефектоскопии на промышленных предприятиях,
работающие на ускорительных установках,
обслуживающие ядерные
Патогенез. Основной особенностью действия ионизирующего излучения является ионизация атомов и молекул живой материи. Этот процесс считается начальным этапом биологического действия излучения и в дальнейшем вызывает функциональные и органические поражения тканей, органов и систем. В основе генеза лучевой болезни лежат сложные механизмы прямого и непрямого воздействия на организм ионизирующего излучения.
Прямое действие радиации (больших доз) на молекулы белка приводит к их денатурации. В результате молекула белка коагулируется и выпадает из коллоидного раствора, в дальнейшем подвергаясь под влиянием протеолитических ферментов распаду. При этом в клетке наблюдаются нарушения физико-химических процессов с деполимеризацией нуклеиновых кислот, что сопровождается изменением структуры поверхности клетки и проницаемости мембран. По теории мишени предполагается, что не вся клетка чувствительна к облучению. В каждой клетке имеется чувствительный участок - "мишень", которая воспринимает действие ионизирующего излучения. Установлено, что особо чувствительны к действию радиации хромосомы ядер и цитоплазма.
Непрямое действие ионизирующего излучения объясняется механизмом радиолиза воды. Как известно, вода составляет около 80% массы всех органов и тканей человеческого организма. При ионизации воды образуются радикалы, обладающие как окислительными, так и восстановительными свойствами. Наибольшее значение из них имеют атомарный водород (Н), гидроксид (НО2), перикись водорода (Н202). Свободные окисляющие радикалы вступают в реакцию с ферментами, содержащими сульфгидрильные группы (SH), которые превращаются в неактивные дисульфидные соединения (S==S). В результате этих реакций и превращений нарушается каталитическая активность важных тиоловых ферментных систем, принимающих активное участие в синтезе нуклеопрцтеидов и нуклеиновых кислот, имеющих огромное значение для жизнедеятельности организма. Количество ДНК и РНК в ядрах клеток резко снижается, нарушается процесс их обновления. Изменения биохимизма ядер при этом морфологически выражаются в виде различных нарушений структуры хромосом, а следовательно, и всей генетической системы. Угнетение митотической активности тканей рассматривается как одно из специфических проявлений биологического действия ионизирующей радиации.
На
течение биохимических
Одно из ведущих мест в патогенезе лучевой болезни занимает поражение органов кроветворения. Кроветворная ткань наиболее чувствительна к радиации, особенно бластные клетки костного мозга. Поэтому развивающаяся под влиянием радиации аплазия костного мозга является следствием угнетения митотической активности кроветворной ткани и массовой гибели малодифференцированных костномозговых клеток. Резкое снижение кроветворения обусловливает развитие геморрагического синдрома.