Автор: Пользователь скрыл имя, 16 Февраля 2012 в 19:09, контрольная работа
Работодатель обязан обеспечить обучение, инструктаж работников и проверку знаний работником норм, правил и инструкций по охране труда. Работа по обучению руководителей и специалистов регулируется типовым Положением о порядке обучения и проверки знаний по охране труда руководителей и специалистов предприятий, учреждений и организаций, утвержденным постановлением Министерства труда РФ от 12 октября 1994 года № 65. Положением предусмотрено обязательное обучение и проверка знаний по охране труда всех работников предприятий, включая руководителей.
Организация обучения, инструктирования и проверки знаний по охране труда 3
Классификация вредных веществ по степени влияния на организм человека 8
Источники искусственного света 12
Требования к организации и оборудованию рабочих мест с ВДТ и ПЭВМ для взрослых пользователей 14
Оказание первой доврачебной помощи пострадавшему от электрического тока 17
6. Приложение 22
Список используемой литературы 23
Токсические вещества поступают в организм человека через дыхательные пути (ингаляционное проникновение), желудочно-кишечный тракт и кожу. Степень отравления зависит от их агрегатного состояния (газообразные и парообразные вещества, жидкие и твердые аэрозоли) и от характера технологического процесса (нагрев вещества, измельчение и др.).
Преобладающее
большинство профессиональных отравлений
связано с ингаляционным
Поступление
токсических веществ через
Вещества, хорошо растворимые в жирах и липоидах, могут проникать в кровь через неповрежденную кожу. Сильное отравление вызывают вещества, обладающие повышенной токсичностью, малой летучестью, быстрой растворимостью в крови. К таким веществам можно отнести, например, нитро- и аминопродукты ароматических углеводородов, тетраэтилсвинец, метиловый спирт и др.
Токсические вещества в организме распределяются неодинаково, причем некоторые из них способны к накоплению в определенных тканях.
Здесь особо можно выделить электролиты, многие из которых весьма быстро исчезают из крови и сосредоточиваются в отдельных органах. Свинец накапливается в основном в костях, марганец — в печени, ртуть — в почках и толстой кишке. Естественно, что особенность распределения ядов может в какой-то мере отражаться и на их дальнейшей судьбе в организме.
Вступая в круг сложных и многообразных жизненных процессов, токсические вещества подвергаются разнообразным превращениям в ходе реакций окисления, восстановления и гидролитического расщепления. Общая направленность этих превращений характеризуется наиболее часто образованием менее ядовитых соединений, хотя в отдельных случаях могут получаться и более токсические продукты (например, формальдегид при окислении метилового спирта).
Выделение токсических веществ из организма нередко происходит тем же путем, что и поступление. Нереагирующие пары и газы частично или полностью удаляются через легкие. Значительное количество ядов и продукты их превращения выделяются через почки. Определенную роль для выделения ядов из организма играют кожные покровы, причем этот процесс в основном совершают сальные и потовые железы.
Необходимо иметь в виду, что выделение некоторых токсических веществ возможно в составе женского молока (свинец, ртуть, алкоголь). Это создает опасность отравления грудных детей. Поэтому беременных женщин и кормящих матерей следует временно отстранять от производственных операций, выделяющих токсические вещества.
Токсическое действие отдельных вредных веществ может проявляться в виде вторичных поражений, например, колиты при мышьяковых и ртутных отравлениях, стоматиты при отравлениях свинцом и ртутью и т. д.
Опасность вредных веществ для человека во многом определяется их химической структурой и физико-химическими свойствами. Немаловажное значение в отношении токсического воздействия имеет дисперсность проникающего в организм химического вещества, причем, чем выше дисперсность, тем токсичнее вещество.
Условия
среды могут либо усиливать, либо
ослаблять его действие. Так, при
высокой температуре воздуха
опасность отравления повышается; отравления
амидо- и нитросоединением бензола,
например, летом бывают чаще, чем
зимой. Высокая температура влияет
и на летучесть газа, скорость испарения
и т. д. Установлено, что влажность воздуха
усиливает токсичность некоторых ядов
(соляная кислота, фтористый водород).
Для создания искусственного освещения, как правило, используются электрические источники света, излучение которых возникает в результате прямого или опосредованного преобразования электрической энергии.
К наиболее распространенным электрическим источникам света относятся лампы накаливания, люминесцентные и газоразрядные. В лампах накаливания излучающим элементом является вольфрамовая нить, помещенная в стеклянный баллон с инертным газом и разогреваемая электрическим током до высокой температуры (2500...3000 К). Спектр излучения ламп накаливания непрерывный. Максимум спектральной плотности излучения приходится на ближнюю инфракрасную область (1,0...1,2 мкм). Видимое излучение составляет не более 10...12% лучистого потока, причем основная часть приходится на оранжево-красную часть спектра. А в ультрафиолетовой и инфракрасной областях спектр излучения ламп накаливания вследствие поглощения в стеклянном баллоне заметно отличается от спектра излучения черного тела с соответствующей цветовой температурой.
В источниках излучения с лампами накаливания обычно используются отражающие и светорассеивающие элементы. Расположение и форма этих элементов в значительной мере определяют индикатрису излучения источников освещения. Задать индикатрису излучения, как правило, можно лишь приближенно.
Люминесцентные лампы в настоящее время очень широко используются в источниках освещения общественных, выставочных, торговых и других помещений. Они выполняются в виде цилиндрической трубки, заполненной аргоном с парами ртути.
В люминесцентных лампах используется электрический разряд в парах ртути низкого давления, из-за чего возникает мощное излучение на нескольких длинах волн в ультрафиолетовой и видимой частях спектра. Внутренняя поверхность трубки люминесцентной лампы покрыта тонким слоем люминофора, который, поглощая коротковолновое излучение, излучает сплошной спектр. Подбором люминофора можно в широких пределах менять форму спектральной плотности потока излучения, создавая имитацию той или иной цветовой температуры. Промышленностью выпускаются люминесцентные лампы нескольких типов: дневного света марки ЛД с К; белого света ЛБ с К; холодного белого света ЛХБ с К; используются также лампы марок ЛЕК с К и ЛХЕ с К.
Источники
освещения с люминесцентными
лампами обычно представляют собой
сборку из нескольких ламп с общим
отражателем и
К газоразрядным относятся лампы, в которых используется непосредственное излучение электрического разряда в газе. В ртутных лампах высокого давления (до 1 МПа) основная энергия при электрическом разряде сосредоточена на длинах волн нм, т.е. в сине-зеленой части спектра. Отсутствие в излучении ртутных ламп спектральных составляющих в красной области спектра приводит к заметным искажениям цветопередачи. Поэтому в ртутных лампах применяются специальные меры по улучшению спектрозонального состава излучения. В ртутно-люминесцентных лампах используются стеклянные колбы, покрытые изнутри люминофором с достаточным излучением в длинноволновой части видимого спектра. В металлогалоидных лампах к парам ртути добавляются галогениды (обычно йодиды) натрия, индия, таллия и других металлов, дающие излучения в желто-оранжевой области спектра.
В качестве источников очень большой яркости используются также ксеноновые лампы высокого и сверхвысокого давлений. Излучение этих ламп определяется дуговым разрядом в ксеноне. Спектральный состав излучения близок к дневному излучению.
В
ряде систем в качестве источников
освещения используются лазеры. Отличительными
особенностями этих источников являются
высокая монохроматичность и направленность
излучения. В большинстве практических
задач можно считать, что лазеры излучают
на фиксированной длине волны, а диаграмма
направленности (индикатриса излучения)
может быть аппроксимирована гауссоидой
или близкой к ней функцией.
Высота рабочей поверхности стола для взрослых пользователей должна регулироваться в пределах 680 - 800 мм; при отсутствии такой возможности высота рабочей поверхности стола должна составлять 725 мм. Модульными размерами рабочей поверхности стола для ВДТ и ПЭВМ, на основании которых должны рассчитываться конструктивные размеры, следует считать: ширину 800, 1000, 1200 и 1400 мм, глубину 800 и 1000 мм при нерегулируемой его высоте, равной 725 мм. Рабочий стол должен иметь пространство для ног высотой не менее 600 мм, шириной - не менее 500 мм, глубиной на уровне колен - не менее 450 мм и на уровне вытянутых ног - не менее 650 мм.
Рабочий стул (кресло) должен быть подъемно-поворотным и регулируемым по высоте и углам наклона сиденья и спинки, а так же - расстоянию спинки от переднего края сиденья. Конструкция его должна обеспечивать:
Рабочее место должно быть оборудовано подставкой для ног, имеющей ширину не менее 300 мм, глубину не менее 400 мм, регулировку по высоте в пределах до 150 мм и по углу наклона опорной поверхности подставки до 20 градусов. Поверхность подставки должна быть рифленой и иметь по переднему краю бортик высотой 10 мм.
Рабочее место с ВДТ и ПЭВМ должно быть оснащено легко перемещаемым пюпитром для документов.
При организации рабочих мест для работы на технологическом оборудовании, в состав которых входят ВДТ или ПЭВМ (станки с программным управлением, роботизированные технологические комплексы, гибкое автоматизированное производство, диспетчерские пульты управления и др.), следует предусматривать:
Клавиатуру следует располагать на поверхности стола на расстоянии 100 - 300 мм от края, обращенного к пользователю или на специальной, регулируемой по высоте рабочей поверхности, отделенной от основной столешницы.
Спасение пострадавшего от электрического тока в значительной степени зависит от того, как быстро и правильно спасающий окажет первую доврачебную помощь. Последовательность действий спасающего такова:
а) освобождение пострадавшего, находящегося под напряжением, от действия электрического тока;
б)
вызов врача или срочная
Информация о работе Контрольная работа по «Безопасность жизнедеятельности»