Автор: Пользователь скрыл имя, 16 Февраля 2013 в 09:54, реферат
Опасные и вредные производственные факторы по природе возникновения делятся на следующие группы:
• физические;
• химические;
• психофизиологические;
• биологические.
Вопросы безопасной жизнедеятельности человека
Вопросы безопасной жизнедеятельности
человека необходимо решать на всех стадиях
жизненного цикла, будь то разработка,
внедрение в жизнь или
Обеспечение безопасной жизнедеятельности человека в значительной степени зависит от правильной оценки опасных, вредных производственных факторов. Одинаковые по тяжести изменения в организме человека могут быть вызваны различными причинами. Это могут быть какие-либо факторы производственной среды, чрезмерная физическая и умственная нагрузка, нервно-эмоциональное напряжение, а также разное сочетание этих причин.
В данной главе я решаю вопросы безопасной жизнедеятельности на стадии разработки программного комплекса, предназначенного контроля готовых изделий на наличие дефектов, диагностики и идентификации дефектов работающего оборудования с помощью исследования их спектральных графиков.
Лаборатория, в которой
разрабатывался программный комплекс,
находится в корпусе
1. Анализ опасных и вредных факторов, воздействующих на программиста при разработке данной системы
Опасные и вредные производственные факторы по природе возникновения делятся на следующие группы:
В помещении лаборатории
на программиста могут негативно
действовать следующие
К химически опасным факторам, постоянно действующим на программиста относятся следующие: возникновение, в результате ионизации воздуха при работе компьютера, активных частиц.
Биологические вредные производственные факторы в данном помещении отсутствуют.
К психологически вредным факторам, воздействующим на оператора в течение его рабочей смены можно отнести следующие:
Далее более подробно рассмотрены опасные и вредные факторы, воздействующие на программиста, возникшие в связи с разработкой данной системы.
1.1. Микроклимат рабочей зоны программиста
Микроклимат производственных помещений — это климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха.
Для создания и автоматического
поддержания в лаборатории
1.2. Освещение рабочего места
Работа, выполняемая с использованием вычислительной техники, имеют следующие недостатки:
В связи с тем, что естественное освещение слабое, на рабочем месте должно применяться также искусственное освещение. Далее будет произведен расчет искусственного освещения.
Размещение светильников определяется следующими размерами: Н = 3 м — высота помещения, hc = 0,25 м — расстояние светильников от перекрытия, hп = H - hc = 3 - 0,25 = 2,75 м — высота светильников над полом, hp = высота расчетной поверхности = 0,7 м (для помещений, связанных с работой ПЭВМ), h = hп - hp = 2,75 - 0,7 = 2,05 — расчетная высота.
Светильника типа ЛДР (2х40 Вт). Длина 1,24 м, ширина 0,27 м, высота 0,10 м.
L — расстояние между соседними светильниками (рядами люминесцентных светильников), Lа (по длине помещения) = 1,76 м, Lв (по ширине помещения) = 3 м.
l — расстояние от крайних светильников или рядов светильников до стены, l = 0,3 - 0,5L, lа = 0,5La, lв = 0,3Lв, la = 0,88 м., lв = 0,73 м.
Светильники с люминесцентными лампами в помещениях для работы рекомендуют устанавливать рядами.
Метод коэффициента использования светового потока предназначен для расчета общего равномерного освещения горизонтальных поверхностей при отсутствии крупных затемняющих предметов. Потребный поток ламп в каждом светильнике: Ф = Е * r * S * z / N * h, где Е — заданная минимальная освещенность = 300 лк., т. к. разряд зрительных работ = 3, r — коэффициент запаса = 1,3 (для помещений, связанных с работой ПЭВМ), S — освещаемая площадь = 30 м2, z — характеризует неравномерное освещение, z = Еср / Еmin — зависит от отношения l = L/h , l a = La/h = 0,6, l в = Lв/h = 1,5. Т. к. l превышают допустимых значений, то z = 1,1 (для люминесцентных ламп).
N — число светильников, намечаемое до расчета. Первоначально намечается число рядов n, которое подставляется вместо N. Тогда Ф — поток ламп одного ряда.
N = Ф/Ф1, где Ф1 — поток ламп в каждом светильнике.
h — коэффициент использования. Для его нахождения выбирают индекс помещения i и предположительно оцениваются коэффициенты отражения поверхностей помещения r пот. (потолка) = 70 %, r ст. (стены) = 50 %, r р. (пола) = 30 %. Ф = 300 * 1,3 * 25 * 1,1 / 2 * 0,3 = 21450 лм.
Я предлагаю установить два светильника в ряд. Светильники вмещаются в ряд, так как длина ряда около 4 м. Применяем светильники с лампами 2х40 Вт с общим потоком 5700 лм. Схема расположения светильников представлена на рисунке 1.1.
Рис. 1.1.
Схема расположения светильников
1.3. Воздействие шума на программиста. Защита от шума
В помещениях с низким
уровнем общего шума, каким является
лаборатория где работает программист,
источниками шумовых помех
Согласно ГОСТ 12.1.003-76 ССБТ эквивалентный уровень звука не должен превышать 50 дБА. Для того, чтобы добиться этого уровня шума рекомендуется применять звукопоглощающее покрытие стен.
В качестве мер по снижению шума можно предложить следующее:
Поэтому я предлагаю для уменьшения шума в лаборатории использовать вместо матричного принтера, который производит много шума, более тихий — лазерный принтер.
Защиту от шума следует выполнять в соответствии с ГОСТ 12.1.003-76, а звукоизоляция ограждающих конструкций должна отвечать требованиям главы СНиП 11-12-77 “Защита от шума. Нормы проектирования”.
1.4. Опасность повышенного уровня напряженности электромагнитного поля
Электромагнитные поля, характеризующиеся напряженностями электрических и магнитных полей, наиболее вредны для организма человек. Основным источником этих проблем, связанных с охраной здоровья людей, использующих в своей работе автоматизированные информационные системы на основе персональных компьютеров, являются дисплеи (мониторы), особенно дисплеи с электронно-лучевыми трубками. Они представляют собой источники наиболее вредных излучений, неблагоприятно влияющих на здоровье программиста.
ПЭВМ являются источниками таких излучений как:
Ультрафиолетовое излучение
полезно в небольших
Может возникнуть опасность по уровням напряженности электромагнитного поля. На расстоянии 5 – 10 см от экрана и корпуса монитора уровни напряженности могут достигать 140 В/м по электрической составляющей, что значительно превышает допустимые значения СанПиН 2.2.2. 542-96. Предельно допустимые значения характеристик ЭМП указана в таблице 1.1.
Таблица 1.1.
Предельно допустимые значения характеристик ЭМП
Наименование параметров |
Допустимое Значение |
Напряженность электромагнитного поля по электрической составляющей на расстоянии 50 см от поверхности видеомонитора |
10 В/м |
Напряженность электромагнитного поля по магнитной составляющей на расстоянии 50 см от поверхности видеомонитора |
0,3 А/м |
Напряженность электростатического поля не должно превышать: для взрослых пользователей |
20 кВ/м |
Напряженность электромагнитного поля на расстоянии 50 см вокруг ВДТ по электрической составляющей должна быть не более: |
|
в диапазоне частот 5 Гц – 2 кГц; |
25 В/м |
в диапазоне частот 2 – 400 кГц |
2,5 В/м |
Плотность магнитного потока должна быть не более: |
|
в диапазоне частот 5 Гц – 2 кГц; |
250нТл |
в диапазоне частот 2 – 400 кГц |
25 нТл |
Поверхностный электростатический потенциал не должен превышать |
500 В |
Для предупреждения внедрения опасной техники все дисплеи должны проходить испытания на соответствие требованиям безопасности (например международные стандарты MRP 2, TCO 99).
Так как работа программиста по виду трудовой деятельности относится к группе В – творческая работа в режиме диалога с ЭВМ, а по напряженности работы ко II категории тяжести (СанПиН 2.2.2.542-96), я предлагаю сократить время работы за компьютером, делать перерывы суммарное время которых должно составлять 50 минут при 8-ми часовой смене и, конечно же, применять защитные экраны. Например, защитный экран “ERGON” способен защитить организм человека от электромагнитных полей, благодаря внедрению новых идей, связанных с поляризованными покрытиями. Для снятия заряда защитный экран, установленный на мониторе необходимо заземлить.
1.5. Электробезопасность. Статическое электричество
Помещение лаборатории по опасности поражения электрическим током можно отнести к 1 классу, т. е. это помещение без повышенной опасности (сухое, бес пыльное, с нормальной температурой воздуха, изолированными полами и малым числом заземленных приборов).
На рабочем месте программиста из всего оборудования металлическим является лишь корпус системного блока компьютера, но здесь используются системные блоки, отвечающие стандарту фирмы IBM, в которых кроме рабочей изоляции предусмотрен элемент для заземления и провод с заземляющей жилой для присоединения к источнику питания. Таким образом, оборудование обменного пункта выполнено по классу 1 (ПУЭ).