Участь мікроорганізмів у кругообігу N2

Автор: Пользователь скрыл имя, 19 Декабря 2012 в 11:51, курсовая работа

Краткое описание

Більшу частину азоту біосфери становить молекулярний азот N2, на долю якого припадає до 80 % усіх, молекул повітря. Молекулярний азот атмосфери не може засвоюватися більшістю вищих рослин. Ці рослини можуть використовувати для свого живлення переважно мінеральні сполуки цього елемента, які знаходяться у ґрунті. Однак існує велика група ґрунтових вільноживучих і симбіотичних мікроорганізмів, які, завдяки наявності у них нітрогеназної системи, мають здатність засвоювати молекулярний азот атмосфери.

Оглавление

ВСТУП
РОЗДІЛ 1. Суть процесу перетворення азоту мікроорганізмами
Розділ 2. Групи бактерій, які приймають участь у кругообігу азоту
2.1 Бульбочкові бактерії
2.2 Вільноживучі азот фіксатори
РОЗДІЛ 3. Шляхи перетворення азоту
3.1 Процеси амоніфікації як перший етап перетворення азоту
3.2 Процеси нітрифікації
3.3 Денітрифікація
3.4 Шляхи фіксації азоту
РОЗДІЛ 4. Використання бактеріальних препаратів в сільському господарстві
ВИСНОВКИ
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

Файлы: 1 файл

курсач не мой.doc

— 116.50 Кб (Скачать)

 

Досліди, проведені в Інституті  мікробіології Російської АН, показали, що синьозелені водорості (ціанобактерії) під час інтенсивного розвитку можуть нагромаджувати за вегетаційний період до 50—70 кг азоту на 1 га.

 

Останніми роками вчені різних країн  приділяють велику увагу вивченню процесу  фіксації азоту мікроорганізмами, які  містяться на корінні і в прикореневій зоні небобових рослин. Ці мікроби дістали назву ризосферних, а процес зв'язування ними молекулярного азоту називається асоціативною азотфіксацією.

 

Азотфіксуюча активність виявлена у представників багатьох родів  ризосферних бактерій: Agrobacterium, Achromobacter, Aquaspi-rillum, Azospirillum, Arthrobacter, Bacillus, Flavobacterium, Enterobac-ter, Erwina, Flavobacterium, Klebsiella, Mycobacterium, Pseudomonas, Rhodospirillum та ін.

 

Хімізм фіксації молекулярного  азоту. Метод Габера—Боша, до якого  вдаються нині, щоб одержати з атмосферного повітря NH3, потребує високих температур і тиску. Натомість біологічна фіксація азоту відбувається за звичайних умов.

 

Але процес зв'язування молекулярного  азоту досить енергоємний. Щоб розірвати  три зв'язки, між двома атомами  в молекулі азоту необхідно затратити 941 кДж/моль. Експериментально доведено, що під час розвитку азотфіксатори, які зв'язують молекулярний азот, на одиницю маси новоутворених клітин витрачають більше енергії, ніж при рості на сполуках азоту.

 

Зв'язування молекулярного азоту може відбуватися двома шляхами: відновленням або окисленням. Кожен з цих шляхів є багатоступінчастим і каталізується своїми ферментативними системами. Більшість дослідників вважають, що фіксація N2 здійснюється за відновним шляхом.

 

Перші досліди з вивчення ферментного комплексу, який забезпечує процес фіксації N2, було проведено ще в 1934 p., коли відомий російський біохімік О.М.Бах (із співробітниками) зробив спробу одержати безклітинний препарат, який містить ферментний комплекс, що зв'язує молекулярний азот. Однак це складне завдання завдяки зусиллям багатьох вчених було розв'язано значно пізніше.

 

Ферментна система, яка відповідає за фіксацію N2, називається нітрогеназою. Вона складається з двох білкових компонентів. Один із них містить  Мо і Fe і називається молібдофередоксином, а другий містить тільки Fe і називається азофередоксином. У складі останнього, як і в молібдофередоксині, є сульфідні групи. Молібдофередоксин (Mo-Fd) інактивується киснем, а азофередоксин, навпаки, чутливий до кисню (Azo-Fd). Нітрогеназа здійснює процес, при якому водень відновної сполуки переноситься на N2 з утворенням NH3. Активування азоту і водню в клітинах азотфіксаторів, необхідних для перетворення N2 на NH3, здійснюється також фередоксином — білком негемінової природи (Fid). Водень у мікробній клітині може утворюватися у низці процесів. Молекулярний азот і водень активуються електронами, які утворюються в ланцюзі окислювально-відновних процесів.

 

Незалежно від безпосереднього  джерела електронів вони повинні  передаватись в нітрогеназну систему відновником з низьким потенціалом, який містить негемінове залізо, — переносником електронів (Fd):

 

 

 

У ланцюгу  перенесення електронів, який складається  із фередоксину (Fd), азофередоксину (AzoFd), і молібдофередоксину (MoFd), за один раз переносяться тільки два електрони (для останнього перенесення потрібно витратити одну молекулу АТФ). Але для відновлення N2 до NH3 потрібно шість електронів, а тому реакція повинна складатися із послідовних двоелектронних стадій. Характерно, що в реакційній суміші ніколи не знаходили частково відновлених проміжних продуктів. Вважають, що вони залишаються зв'язаними з ферментом, і відновлення відбувається через такі проміжні стадії:

 

 

 

Встановлено, що нітрогеназа може відновлювати не тільки молекулярний азот, а й інші сполуки. На здатності нітрогенази відновлювати ацетилен до етилену ґрунтується непрямий метод її визначення, який знайшов широке застосування на практиці (R.Hardy, 1973).

 

Аміак, який утворюється при відновленні  молекулярного азоту, реагує з кетокислотами бактеріальної клітини (піровиноградною, щавлевооцтовою тощо), в результаті чого утворюються амінокислоти.

 

При наявності  сполук перехідних металів — титану, ванадію, хрому, молібдену і заліза — відбувається активація N2 у звичайних умовах. При цьому утворюються комплексні сполуки, які розкладаються водою до аміаку. Отже, дані, одержані вітчизняними і зарубіжними вченими, дають змогу сподіватися на те, що через певний час буде розроблено промисловий метод м'якої хімічної фіксації молекулярного азоту.

 

Функціонування  мультиферментного комплексу нітрогенази  визначається особливими генами (nif-генами). Інтенсивно проводяться роботи з  вивчення можливості штучної передачі цих генів від азотфіксуючих  мікробів іншим мікроорганізмам, які  не здатні фіксувати N2.

 

Цікаві  дані щодо цього одержано при перенесенні  групи nif-генів бактерії Klebsiella pneumoniae до клітини Е.соіі. Спочатку перенесення  здійснювалося введенням nif-генів  до плазмід, які потім було введено  в Е.соlі. Відомо, що Е.соlі не фіксує N2. Новий штам Е.соlі набув властивостей синтезувати нітрогеназу і завдяки цьому виявився здатним до фіксації N2.

 

Успіх цього  експерименту вселяє надію, що методами генної інженерії незабаром вдасться створити рослини пшениці, кукурудзи  та інших культур, які матимуть здатність фіксувати N2. Значення цього відкриття для агровиробництва важко переоцінити.

 

РОЗДІЛ 2. ШЛЯХИ  ПЕРЕТВОРЕННЯ АЗОТУ

 

2.1 Процеси  амоніфікації як перший етап  перетворення азоту

 

Одним із основних шляхів перетворення азоту в ґрунті є гниття, або  розклад білків мікроорганізмами, який дістав назву процесу амоніфікації. Це складний багатофазовий процес, кінцеві результати якого залежать від будови й складу білка, умов, у яких відбувається розклад, і від збудників, що спричинюють його. Гниття білків починається з їхнього гідролізу під впливом протеолітичних ферментів, які виділяються мікроорганізмами в оточуюче середовище. Процесу амоніфікації піддаються не тільки білки, а й їхні похідні — пептони, пептиди, амінокислоти, а також нуклеїнові кислоти та їхні похідні — пуринові і піримідинові основи, сечовина, сечова кислота, складний азотовмісний цукор хітин і гумусові кислоти.

 

Первинними продуктами гідролізу  білків є пептони і пептиди, які далі розщеплюються до кінцевих продуктів гідролізу — амінокислот, останні використовуються мікробами або перетворюються ними на аміак і інші сполуки залежно від природи самих амінокислот і ферментів мікроорганізмів. Перетворення амінокислот найчастіше відбувається через дезамінування. Наприклад, гідролітичне дезамінування супроводжується утворенням оксикислот і аміаку:

 

R - CHNH2COOH + Н2О → R - СНОНСООН + NH3.

 

Після дезамінування вуглецевий залишок  перетворюється мікробами в аеробних або анаеробних умовах до утворення СО2 і різних органічних сполук. В аеробних умовах продукти розкладу білків повністю мінералізуються, утворюються СО2, Н2О, NH3, H2S, H2. В анаеробних умовах повної мінералізації проміжних продуктів розкладу амінокислот не відбувається. У цьому випадку поряд з СО2 і NH3 нагромаджуються різні органічні кислоти, спирти, аміни тощо.

 

При розкладі амінокислот ароматичного ряду утворюються проміжні продукти: фенол, крезол, скатол, індол, які мають  дуже неприємний запах. Сірководень  та його похідні — меркаптани — утворюються під час гідролізу сірковмісних амінокислот.

 

При амоніфікації білків в анаеробних умовах можуть утворюватися і токсичні речовини, наприклад діаміни, до яких належать кадаверин і путресцин.

 

Амоніфікацію білків зумовлюють різні  види аеробних і анаеробних мікроорганізмів. Особливо активними амоніфікаторами є представники роду Bacillus (В. subtilis, В. cereus, В. mycoides), Pseudomonas (P. fluorescens, P. aeruginosa), Clostridium (C. sporogenes, C. putrificus), Proteus vulgaris та інші.

 

Разом з бактеріями активну участь в амоніфікації білкових речовин  беруть ґрунтові гриби й актиноміцети — Aspergillus, Penicillium, Mucor, Trichoderma, Cladosporium тощо. Оскільки амоніфікацію білків спричиняють  різні групи мікроорганізмів, то вона може відбуватися в широкому інтервалі кислотності.

 

 

 

Рис. 4. Найпоширеніші спороносні бактерії-амоніфікатори  та їхні колонії:

 

І — палички; II — колонії (1 —  В. megaterium; 2 — В. subtilis; 3 — В. mycoides; 4 — В. mesentericus)

 

Амоніфікація гумусових сполук — процес дуже повільний. Наприклад, у помірному кліматі протягом року розкладається приблизно 1—3% загального запасу ґрунтового гумусу. Амоніфікацію гумінових речовин мікробами можна зобразити такою спрощеною схемою: гумінові речовини + О2 → СО2 + Н2О +NH3. У цьому важливому процесі беруть участь аеробні і анаеробні мікроорганізми (рис. 4).

 

Розклад нуклеїнових кислот. Під  впливом ферментів рибонуклеази і дезоксирибонуклеази, які синтезуються деякими видами грибів, актиноміцетів  і бактерій, нуклеїнові кислоти розкладаються до мононуклеотидів. Останні під дією нуклеотидів розщеплюються на фосфорну кислоту, цукор, пуринові і піримідинові основи.

 

Далі, залежно від типу обміну речовин  мікроорганізмів, цукор може окислюватися до кінцевих продуктів СО2, Н2О або піддаватися процесу бродіння з утворенням відповідних органічних речовин.

 

Азотовмісні основи розкладаються  спочатку до сечовини і амінокислот, а далі до аміаку і органічних кислот.

 

Гідроліз сечовини. До поширених  у природі азотовмісних сполук належать також сечовина, сечова і гіпурова кислоти, які містяться в сечі людини і тварин. Сечовина може синтезуватись також грибами. Наприклад, у шампіньйонів до 13 % сухої маси припадає на сечовину. Розклад сечовини у ґрунті зумовлює особлива група уробактерій. Найенергійнішими збудниками цього процесу є Micrococcus ureae, Sporosarcina ureae, Bacillus pasteurii (рис. 5).

 

 

 

Рис. 5. Уробактерії:

 

A — Bacillus pasteurii; В — Sporosarcina ureae

 

Уробактерії здебільшого належать до аеробів, добре розвиваються при  рН = 9. Виділяючи фермент уреазу, ці бактерії перетворюють сечовину на аміак і вуглекислий газ. Фізіологічний смисл розкладу сечовини зводиться до переведення амінної форми азоту в аміачну, яка легше засвоюється рослинами.

 

2.2 Процеси нітрифікації

 

Другим етапом перетворення азоту в ґрунті є нітрифікація. Аміак, який утворюється при розкладі органічних речовин у ґрунті, воді та інших середовищах, досить швидко окислюється до азотистої, а потім азотної кислот. Цей процес і дістав назву нітрифікації. У 1890-1892 pp. С.М.Виноградський, застосувавши розроблену ним методику елективних культур, виділив чисту культуру бактерій цього процесу.

 

До дослідів С. М. Виноградського припускалось, що причиною нітрифікації є один вид  мікроорганізмів, які окислюють  амонійні сполуки до нітратів. Проте працями С. М. Виноградського було доведено, що цей процес є результатом послідовної дії двох груп мікроорганізмів і відбувається він у дві фази, а саме: спочатку амонійні сполуки окислюються першою групою бактерій до азотистої кислоти, яка другою групою бактерій окислюється до азотної:

 

NH4 + 1/2О2 = NO2 + H2O+2H+;

 

NO2+1/2O2 = NO3-.

 

Першу фазу нітрифікації здійснюють нітрозобактерії (Nitrosomonas, Nitrosocystis, Nitrosolobus, Nitrosospira, Nitrosovibrio). У другій фазі нітрифікації азотисту кислоту окислюють Nitrobacter, Nitrospira, Nitrococcus. Найкраще серед нітрифікаторів вивчено Nitrobacter winogradskyi, однак описано й інші види збудників цього процесу, серед деяких є навіть гетеротрофні представники з родів Pseudomonas, Achromobacter, Corynebacterium, Nocardia, Bacillus тощо.

 

Нітрифікуючі бактерії переважно  належать до типових хемолітотрофів. Між ними існують метаболітичні  взаємовідносини. Саме етапність процесу  нітрифікації є характерною рисою  таких взаємовідносин між мікроорганізмами. Метабіоз існує також між нітрифікуючими і гнильними (амоніфікуючими) бактеріями. Як уже зазначалось, у нітрифікуючих та інших хемолітотрофних бактерій С.М.Виноградським було відкрито процес хемосинтезу.

 

Вважають, що великі поклади селітри  в деяких країнах — результат процесів нітрифікації, які відбувалися на нашій планеті протягом мільйонів років.

 

У різних ґрунтах інтенсивність  процесів нітрифікації є різною. Чим  багатший ґрунт, тим більше може нагромаджуватися азотної кислоти. Проте не слід забувати, що солі азотної кислоти (нітрати), на відміну від амонійних (іон амонію поглинається ґрунтовим комплексом), можуть легко вимиватися з ґрунту, а це істотно впливає на зниження коефіцієнта використання нітратів рослинами.

 

Крім того, в самій рослині  нітрати повинні відновитися, щоб рослина змогла використати їх у процесах біосинтезу, а для цього потрібна енергія; амоній може використовуватися рослинами й безпосередньо. Все це змушує дослідників вирішувати питання про штучне зниження інтенсивності процесу нітрифікації завдяки використанню специфічних інгібіторів.

 

2.3 Денітрифікація

 

Нітрати, які утворюються в ґрунті, використовуються не тільки рослинами, а й окремими видами мікроорганізмів.

 

Особлива роль при цьому належить групі мікробів, які можуть відновлювати нітрати до молекулярного азоту; цей процес називається денітрифікацією. Він спричиняється до істотних втрат із ґрунту доступних для рослин форм азоту.

 

Розрізняють пряму і непряму  денітрифікацію. Пряма — це процес відновлення нітратів, безпосередньо пов'язаний із життєдіяльністю денітрифікуючих бактерій. Вона буває двох типів — асиміляторна і дисиміляторна. При асиміляторній денітрифікації нітрати відновлюються до аміаку, який використовується як джерело азоту для побудови тіла мікробів. У дисиміляторній денітрифікації нітрати використовуються як окислювачі органічних речовин замість молекулярного кисню, що забезпечує мікроорганізми потрібною енергією (див. нітратне дихання). Здатність до дисиміляторної денітрифікації мають тільки специфічні аеробні бактерії.

Информация о работе Участь мікроорганізмів у кругообігу N2