Автор: Пользователь скрыл имя, 15 Апреля 2013 в 19:14, шпаргалка
1. Предмет генетики и ее связь с другими науками
2. Этапы развития генетики. Вклад отечественных учёных в развитие генетики
3. Строение ядра и хромосом
22. Регуляция синтеза и-РНК и белка
Процесс реализации генетической информации наз экспрессия генов (работа генов). Работа генов регулируется на уровне транскрипции и-РНК с помощью белков репрессоров и активаторов. Регуляция работы генов прокариот наз индукцией, репрессиии рассматривается на примере работы лактозного оперона. У кишечной палочки за распад лактозы отвечают 3 фермента, а за синтез этих ферментов 3 структурных гена, расположены последовательно друг друга. На этих генах образуется 1 молекула из РНК. Перед структурными генами нах. общий для них оператор, а передний промотр. Оперон - сайт, в котором молекулы белка репрессора. Промотр - несколько нуклеотидов с котор связывается РНК полимераза и начинается транскрипция. На небольшом расстоянии от оперона нах. ген. - репрессор. На нём синтезируется и-РНК, белки репрессоры есть в кл всегда. Репрессия - остановка работы оперона. Индукция - включение в работу. Когда появл вещ-во индукта (лактоза), то молекула индуктора освобождает оператор от белка репрессора, то структурные гены начинают работать. - это негативная регуляция работы генов. Существует пазитивная регуляция - сигнал усиления транскрипции - комплекс АМФ-сар, когда такой комплекс связывается с промотором транскрипция усиливается в 50 раз.
23. Дифференциальная активность генов в онтогенезе
Дифференцировка - возникновение различий между клетками, тканями, органами. До 7 дня зигота тотипотентна, т.е. из любой её кл можно вырастить целый организм или орган. После 7 дня тотипотентность теряется из-за дифференцировки. Все структурные кл условно делят на 3 типа: 1) гены “домашнего” хоз-ва - работующего во все кл организма; 2) гены, работающие в специализированных тканях; 3) гены, выполняющ. 1-ну узкую функцию. Большинство генов многоклеточного организма работают только на определённых стадиях онтогенеза или в определённых тканях. Примеры неравномерной работы генов: 1) инактивация “х” хр-мы у самок. Сначала на ранних стадиях эмбриогенеза из 2-х “х” хр-м по принципу случайности, выбирается одна, затем она инактивируется мителированием - её её неактивное состояние стабилизируется, т.е.сохраняется в течение всеё жизни данного организма. Любой женский организм мазаичный, т.е. 50% отцовских, 50% материнских “х” хромосом. Неравномерная активность отцовских и материнских генов наз. геномным иниринтингом. 2) у эукариот зигота до стадии поздней бластулы развивается за счёт информации, содержащеёся в информосомах. Гены ядра начинают работать со стадии гаструлы. 3) работа гигантских хромосом в слюнных железах личинок насекомых. На них находятся активные гены: 4) изменение состояния гемоглобина у человека и животных с возрастом.
24. Влияние генов и среды на развитие признака
Примером влияния гена на общий метаболизм явл действие доминантного гена коротконогости у кур, который в гом
озиготном состоянии летален, т.к.вызывает общие нарушения развития и гибель зародыша через 76 часов после начала инкубации. Примером влияния генов на отдельные биохимические реакции явл финилаланинтиразиновый обмен у человека. Исходное вещество аминокислота фенилаланин. Под действием ферментов синтез которой контролируется соответствующими генами. В норме должна превращаться в аминокислоту тирозин, при мутации генов наблюдается наследственная недостаточность ферментов и фенилаланин накапливается в организме. Мутации отдельных генов ведут к снижению активности ферментов вплоть до полного прекращения их синтеза. Из - за этого дальнейшие превращения того или иного вещества прекращается, а само оно начинает накапливаться, давая токсический эффект. Признаки условно делят на 3 группы: 1) зависит от генотипа и совсем не зависит от условия жизни - это группы крови и аномалии или уродства; 2) зависит от генотипа и мало от условий жизни - качественные признаки (масть у животных); 3) в основном зависит от условий жизни - большинство хозяйственно - полезных признаков и некоторых мультифакторных заболеваний. Фенокопия - изменение признака под влиянием среды, которое копирует признак, обусловленный генотипом (куры с белым цветом кожи из-за недостатка каротина в корме явл фенокопиями кур с белым цветом кожи из-за наличия в фенотипе доминантного гена W.
25. Критические периоды развития.
Взаимодействие ядра и
Взаимодействие ядра и цитоплазмы в развитии: цитоплазма играет важную роль в реализации наследственной инф-ции и формировании некоторых признаков организма. Основная часть цитоплазмы поступает в зиготу с яйцеклеткой. Определенные участки цитоплазмы яйцеклетки могут содержать факторы, определяющие судьбу тех или иных дифференцирующихся клеток. Активность генов зависит от цитоплазмы. В цитоплазме яйцеклетки имеется активатор синтеза ДНК и репрессор синтеза РНК, которые действуют независимо друг от друга. Если ядра из клеток мозга взрослой лягушки пересадить в зрелый ооцит, то в них синтезируется РНК и не синтезируется ДНК. Некоторые органоиды цитоплазмы, имеющие свою систему белкового синтеза (митохондрии), могут влиять на развитие определенных признаков. Наследование признаков через цитоплазму - цитоплазматическая или внеядерная наследственность. В процессе развития имеет место сложное взаимодействие ядра и цитоплазмы. У растений и особенно животных главная роль в формировании признаков организма принадлежит ядру.
26. Фенотип и генотип
Генотип - совокупность генов бактериальной клетки. Фенотип - совокупность всех признаков и свойств, проявляемых данной культурой. У микроорганизмов изучаются признаки и свойства в целом всей культуры (штамма). Культуры микробов могут отличаться морфологическими, физиологическими и биохимическими признаками. К морфологическим признакам относятся окраска, размер, форма отдельно растущих колоний; к физиологическим и биохимическим - способность или неспособность расти при пониженной или повышенной температуре, устойчивость к антибиотикам, различным ядам, облучению, отношение к питательным средам. Фенотип бактерий обозначают теми же символами, что и генотип, но с прописной буквы. Так генотипам his соответствует фенотип His. Указывает на способность синтезировать гистидин. Генотип микроорганизмов представлен совокупностью генов, обуславливающих потенциальную возможность формирования любого их признака. Но формирования признака происходит в определённых условиях окружающей среды, которые не всегда способствуют проявлению генотипа. Патогенный генотип одного штамма бактерий можно отличить от другого непатогенного штамма только при заражении восприимчивого животного. Геном - совокупность генов в гаплоидном наборе хромосом, т.е. в гаметах. Геном вирусовпредставлен двухцепочечной или одноцепочечной ДНК и двухцепочечной или одноцепочечной РНК. Молекулы нуклеиновых кислот могут быть линейные и кольцевые. Геном бактерий представлен кольцевой молекулой ДНК. Репликация ДНК у бактерийпроисходит - полуконсервативным способом. В репликации участвуют ферменты ДНК - полимеразы. Непрерывная репликация в направлении 5 3 идёт только на одной комплиментарных цепей. Они называются лидирующей. На второй цепи синтез ДНК идёт также в направлении 5 3, но на коротких фрагментах - оказаки. Каждый фрагмент инициируется коротким полирибонуклеотидом. Эти РНК служат затравкой для дальнейшего роста цепи ДНК. Затем РНК удаляется, брешь заполняется при помощи ДНК - полимеразы и фрагменты оказаки соединяются при помощи ферментов лигаз. К моменту завершения цикла репликации ДНК точки прикрепления дочерних ДНК отодвигаются благодаря активному росту участка бактериальной мембраны между ними. В результате сложного комплекса процессов образуется межклеточная перегородка. В период репликации ДНК и образования перегородки клетки непрерывно растёт, идёт формирование рибосом и других соединений. На определённой стадии дочерние клетки отделяются друг от друга. Каждая дочерняя клетка имеет такой же набор генетической информации, какой был в исходной бактериальной клетке.
27. Конъюгация, трансформация у микроорганизмов и трандукция
Конъюгация - перенос генетического материала от одной бактериальной клетки (донора) к другой (реципиенту) при их непосредственном контакте. Один штамм является донором (мужским), а другой - реципиентом (женским). Клетки донора обладают половым фактором F. Он является конъюгативной плазмидой и представляет собой циркулярно-замкнутую молекулу ДНК. Половой фактор F обладает способностью включатся в геном бактерии и тогда из цитоплазматической структуры превращается в фрагмент хромосомы. При конъюгации клетки - доноры F+ соединяются в клетки - реципиентами F- при помощи конъюгационного мостика - особой протоплазматической трубки, образуемой клеткой F+. В клетке донора под влиянием фермента эндонуклеазы в точке внедрения фактора F происходит разрыв цепи ДНК. Свободный конец одной из цепей ДНК постепенно начинает передвигаться через конъюгационный мостик в к
летку реципиента
и сразу же достраивается до двухцепочечной
структуры. На оставшейся в клетке -
доноре цепи ДНК синтезируется вторая
цепь. Конъюгационный мостик очень
хрупкий, легко разрывается, и вся
цепь не успевает перейти. При конъюгации
половой фактор вместе с фрагментом ДНК
иногда переходит в женскую клетку, превращая
её в мужскую и передавая ей свойства,
контролируемые фрагментом хромосомы
донора. Процесс переноса генетической
информации при помощи полового фактора
называется сексдукцией. Трансд
28. Понятия: мутация, мутагенез, мутант. Классификация мутаций
Мутация - стойкое изменение в ДНК и кариотипе особи. Мутагенез - процесс возникновения мутации. Мутаген - фактор, вызывающий мутацию. Мутант - осыбь, у которой мутация проявилась. Классификация: І. По возможности наследования 1. соматические, возник в кл тела и по наследству не передаётся, но в организме появляется клон мутантных кл, одна из причин рака. 2. генеративные в гаметах или в зиготе, передаются по наследству.II По влиянию на жизнеспособ. 1 суперлитальные или полезные - повышают жизнеспособность. 2 нейтральные - не влияют на жизнеспособность. 3 вредные - понижают, в том числе а) сублетальные - выживания от 50-100% б) полулетальные - не более 50% выживаемости. 4. летальные -100%смертельный исход.III По способности проявляться у гетерозигот. 1. доминантные - проявляются в первом поколении. 2. рецессивные - проявл-ся, когда рецессивный мутантный ген перейдёт в гомозиготное состояние. IV. По направлению мутирования. 1. прямые - от нормы к мутации. 2. обратные - от мутации к норме. V. По причинам возникновения. 1. спонтанные - возникают в естественных условиях. 2. индуцированные - получают искусственным путём. VI. По фенотипу. 1. морфологические - изменение внешнего и внутреннего строения. 2. физиологические - влияют на плодовитость, продуктивность, резистентность. 3. биохимические - на обмен веществ. 4. поведенческие - на поведение. VII. По характеру изменения генетического материала. 1. геномные или числовые. 2. хромосомные или структурные. 3. генные или точковые. 4. цитоплазматические.
29. Геномные, хромосоиные, генные, цитоплазматические мутации
Мутация - стойкое изменение в ДНК и кариотипе особи. Геномная мутация - изменение числа хром-м в кариотипе. 1) полиплоидия - изменение числа хром-м, кратное гаплоидному набору. n- гаплоиды, 3n - триплоиды. Использ-ся в растениеводстве особенно n, 3n. У растений это возможно, т.е. они могут размножаться вегетативно. У животных 100 % полиплоиды погибают на стадии эмбриона. Причины полиплоидии: а) нерасхождение всего набора хром-м в мейозе, б) ошибка при оплодотворении. 2) анэуплоидия - увеличение (уменьшение0 числа хром-м в кариотипе на 1-2. 2n+1 - трисомия (синдром Дауна). 2n+2 - тетросомия. 2n-1- моносомия (синдром Тернера). 2n-2 - нулисомия. Причина - нарушение расхождения по одной паре хром-м в анафазе I. Мозаицизм - часть клеток тела имеет ненормальный набор хром-м из-за нарушения митоза во время раннего дробления зиготы.Хромосомная мутация - изменение формы, размера хром-мы, порядка расположения генов в ней. Могут быть сбалансированными (нет утраты или избытка генетического материала, они не проявляются фенотипически) и несбалансированными. Виды: внутрихромосомная (дупликация - в рез-те неравного кроссинговера в гомологичных хром-мах происходит удвоение участка одной хром-