Автор: Пользователь скрыл имя, 21 Марта 2012 в 15:54, реферат
Практическое значение математических моделей, рассмотренных в данной работе, состоит в том, что они дают предварительное количественное представление об изучаемых процессах. Используемые в них параметры (например, скорость размножения) имеют определенный биологический смысл, и это позволяет проверить соответствие модели тому реальному процессу, который, как предполагается, она описывает. На основании полученных данных можно вычислить соответствующие значения параметров и использовать их как основу для дальнейшего исследования.
1. Динамические модели..................................................................................3
2. Применение математических методов.......................................................5
3. Роль теории вероятностей и математической статистики........................6
3.1. Биологическая изменчивость и вероятность.......................................6
4. Многообразие математических методов....................................................7
5. Список использованной литературы.........................................................10
6. Приложение.................................................................................................11
6.1. Примеры решения биологических задач............................................11
НАЦИОНАЛЬНЫЙ БАНК РЕСПУБЛИКИ БЕЛАРУСЬ
УО «ПОЛЕССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
кафедра биотехнологий
Реферат
по дисциплине «Высшая математика»
на тему «Применение математических методов в биологии»
Студентка Глеб Е.П.
Биология (биотехнология), 1 курс, группа 831411
Руководитель
Пинск-2009 г.
Содержание
1. Динамические модели........................
2. Применение математических методов.......................
3. Роль теории вероятностей и математической статистики....................
3.1. Биологическая изменчивость и вероятность...................
4. Многообразие математических методов.......................
5. Список использованной литературы....................
6. Приложение....................
6.1. Примеры решения биологических задач.........................
ДИНАМИЧЕСКИЕ МОДЕЛИ.
Все живые существа рождаются, растут, а затем стареют, претерпевают непрерывные изменения и превращения и, в конце концов, умирают; иными словами, все они всегда вовлечены в какие-то динамические процессы развития во времени. В мире неживой природы также непрерывно протекают различные динамические процессы, и некоторые философы, как, например, Гераклит Эфесский в Древней Греции, положили понятие непрерывного изменения и движения в основу своего мировоззрения.
Живые существа с их саморегуляцией, способностью к приспособлению, целенаправленной активностью и сложными схемами поведения труднее втиснуть в рамки общих математических законов. При математическом описании статических структур были детально рассмотрены пчелиные соты, листорасположение у растений и форма раковины у моллюсков. Даже здесь мы не могли не коснуться процесса роста и развития, в результате которого появилась рассматриваемая структура, и естественно, что этот процесс до некоторой степени определяет выбор соответствующего математического метода. Однако нам необходимо исследовать более конкретно те ситуации, в которых динамическое изменение и развитие обнаруживаются в явной форме с самого начала. По-видимому, наиболее простыми процессами такого рода являются развитие индивидуума и рост популяции. Впервые эти вопросы широко рассмотрел Кетле в 1835 г. в своей знаменитой книге "Essai de Physique Sociale".
Очевидно, что вес и еще один-два простых показателя лишь довольно грубо описывают развитие отдельного индивидуума. Тем не менее, общепризнанно (и совершенно правильно), что такие показатели, если уделяется должное внимание и другим факторам, весьма полезны в качестве ориентира.
Кривые значений веса и роста и их приращений могут быть точно описаны математически. Иногда в литературе сообщается о том, что для подбора многочленов высокого порядка, возможно точнее описывающих полученную экспериментальную кривую, были выполнены громоздкие вычисления. По общепризнанному мнению, вряд ли стоит это делать. Кривая, построенная от руки и проходящая через все точки кривой, дает практически всю требуемую информацию. В частности, графики приращений веса или роста совпадают не только с повседневными наблюдениями, показывающими, что в некоторых интервалах времени вес почти не меняется, а в других быстро растет, особенно в период полового созревания, но и хорошо согласуются с результатами более детальных физиологических и биохимических исследований. Таким образом, измерение роста или веса дает некоторую количественную информацию о жизнедеятельности растущего организма и элементарно характеризует динамику процесса развития.
Обратимся теперь к росту популяции в целом. Под популяцией мы обычно понимаем совокупность определенного числа индивидуумов (возможно, различающихся по возрасту и полу), а не совокупность результатов измерений какого-либо физического признака. Очевидно, что число организмов в популяции представляет собой лишь один аспект в бесконечном многообразии биологического материала. Тем не менее, эта величина служит важным ключом к пониманию поведения всей группы в целом и предоставляет широкие возможности для математического исследования. Во многих биологических работах исследуются такие проблемы, как развитие и эволюция видов, конкуренция между видами, влияние факторов окружающей среды, распространение эпидемий и т. д. Ни одно из этих исследований не может быть сколько-нибудь точным, если оно не начинается с построения некоторой достаточно приемлемой математической модели рассматриваемой популяции.
Одна из простейших моделей роста популяции принадлежит Т. Мальтусу, который в конце XVIII в. заметил, что популяции имеют тенденцию увеличиваться с геометрической прогрессией. Мальтуса беспокоило то, что, по его мнению, средства существования могут возрастать только в арифметической прогрессии и что рано или поздно их станет недостаточно. В природе численность большинства живых существ действительно способна увеличиваться в геометрической прогрессии, однако рост популяций в достаточной мере сдерживают такие факторы, как борьба за существование, болезни, естественная гибель и уничтожение хищниками. Обычно если популяция начинает развиваться в среде с достаточным количеством пищи и при относительно небольшом количестве хищников, то сначала ее численность растет очень быстро. С течением времени запасы пищи истощаются, перенаселенность приводит к условиям, менее благоприятным для выживания, плодовитость снижается и смертность увеличивается. При определенных условиях достигается равновесное состояние, и численность популяции становится более или менее постоянной. Очевидно, что очень важно знать точное соотношение между численностью популяции в различные моменты времени и скоростями размножения и гибели.
Математическую форму этой типичной S-образной кривой роста популяции впервые получил Ферхюльст, современник Кетле. Он использовал следующий подход. Во-первых, удобно рассматривать численность популяции p как непрерывную переменную, что вполне допустимо, если n довольно велико. Во-вторых, рассматривается непрерывное время t, а не дискретные поколения. Допустим, что средняя скорость роста популяции при благоприятных условиях составляет t на одного индивидуума, так что за время dt численность популяции увеличивается на mndt. Это означает, что dn = mndt. Поэтому изменение численности популяции описывается дифференциальным уравнением
dn/dt=mn, (1.1)
решение которого имеет вид
p=аеmt, (1.2)
где а - число индивидуумов в начальный момент времени t = 0. Экспоненциальный рост непрерывной популяции в непрерывном времени, описываемый формулой (1.2), эквивалентен геометрической прогрессии для дискретной численности популяции в предположении дискретной смены поколений.
Приведенные выше уравнения (1.1) и (1.2) напоминают уравнения движения, получаемые при математическом описании динамических систем. Даже в том случае, если размер популяции испытывает заметные колебания, можно все же применять эти уравнения, полагая, что они относятся к средним значениям. Однако необходимо иметь в виду следующее важное обстоятельство. Для некоторых простых явлений, как, например, размножение, гибель и миграция, можно спокойно пренебречь присущей им заметной изменчивостью и выводить уравнения движения для средних значений, как если бы эти средние значения были фактически наблюдаемыми величинами, не подверженными воздействию статистических колебаний. В то же время при исследовании, например, конкуренции между видами, развития эпидемий и вообще любых процессов, в которых участвуют взаимодействующие группы, средние значения, получающиеся из уравнений, выведенных при допущении об отсутствии статистических колебаний, обычно отличаются от истинных средних значений.
Практическое значение математических моделей, рассмотренных в данном разделе, состоит в том, что они дают предварительное количественное представление об изучаемых процессах. Используемые в них параметры (например, скорость размножения) имеют определенный биологический смысл, и это позволяет проверить соответствие модели тому реальному процессу, который, как предполагается, она описывает. На основании полученных данных можно вычислить соответствующие значения параметров и использовать их как основу для дальнейшего исследования.
ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ.
Математические описания, связанные с биологическими формами, охватывают широкий круг вопросов и могут быть проведены достаточно точно. Мы познакомились с динамическими моделями развития и коснулись проблем, связанных со случайными колебаниями численности популяций. Изложение этих вопросов требовало достаточной степени абстракции, однако именно использование упрощающих допущений позволило нам получить некоторое представление о законах, регулирующих рост популяций. Было отмечено, что при рассмотрении такого рода проблем неизбежно приходится сталкиваться с фактором статистической изменчивости.
При переходе на более высокие уровни абстракции мы сталкиваемся не только с более сложными вопросами, но и с возрастающей степенью изменчивости, по большей части непредсказуемой. Например, полная картина конкуренции между несколькими видами, обитающими в определенной среде, включает огромное множество факторов. В области научных экологических описаний, выполненных главным образом в словесной форме, достигнуты значительные успехи, однако разработка математических моделей находится здесь еще на самом элементарном уровне.
В тех случаях, когда задача содержит большое число существенных взаимозависимых факторов, каждый из которых в значительной мере подвержен естественной изменчивости, только с помощью правильно выбранного статистического метода можно точно описать, объяснить и углубленно исследовать всю совокупность взаимосвязанных результатов измерений. Если число факторов или важных результатов настолько велико, что человеческий разум не в состоянии их обработать даже при введении некоторых статистических упрощений, то обработка данных может быть произведена на электронной вычислительной машине.
РОЛЬ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ. БИОЛОГИЧЕСКАЯ ИЗМЕНЧИВОСТЬ И ВЕРОЯТНОСТЬ.
Известно, что отдельные представители любого данного вида могут значительно отличаться друг от друга по весу или размерам тела, и обычно идея описания популяции средними показателями не встречает серьезных возражений. Вес и рост - настолько знакомые для большинства из нас показатели, что усредненные кривые роста или таблицы среднего веса для людей определенного возраста, пола и роста принимают за стандарты, позволяющие судить о степени отклонения от нормы в каждом конкретном случае.
Упорядоченность и регулярность легко обнаруживаются лишь в средних значениях, взятых по большому числу индивидуумов. Поэтому при использовании общей кривой среднего веса в качестве стандарта для суждения о развитии отдельного индивидуума необходимо проявлять большую осторожность. И если не предпринимать серьезных попыток разработать надлежащие математические методы, то это только уменьшит возможность точного описания биологических процессов.
Как хорошо известно, одним из самых плодотворных способов описания характера изменчивости является применение соответствующего закона распределения, который определяет вероятность того, что результат измерения какого-либо параметра индивидуума, выбранного случайным образом, будет иметь любое заданное значение или лежать в определенном интервале значений. Такие непрерывные параметры, как рост, вес и т. п., нередко удовлетворительно описываются кривой нормального, или гауссова, распределения (несмотря на то, что теоретически эта кривая лежит в интервале от - Г до +Г)
Информация о работе Применение математических методов в биологии