Озон та життя

Автор: Пользователь скрыл имя, 13 Февраля 2012 в 23:53, реферат

Краткое описание

Надзвичайну важливість не тільки для історичної геології, а й для сучасної людини має питання про співвдношення життя та озона, що є в атмосфері. Можна вважати, що життя — рослинний та тваринний світ — зміг розвинутися на Землі тільки тогді, коли виник достатньо потужний «озоновий щит», що захищає її від ультрафіолетової радіації Солнця. Зрозуміло, що процей щит ми маємо піклуватися і зараз.

Файлы: 1 файл

моя курсовая.doc

— 92.50 Кб (Скачать)

Розклад озону під впливом УФ-В — реакція зворотня реакції його утворення. Формується циклічний безперервний процес утворення - розпаду озону, що описується реакціями. 

        О2 + фотон 242 нм = О+ О,

        О + О2 + Х = О3+ X* (виділення тепла),

        Оз + фотон 200—310 нм = О2 + О,

        О + О + Х = О2 + Х* (виділення тепла). 

Наслідком циклу є повиє відновлення початкових молекул, поглинання більшої частини ультрафіолетового випромінюваиня Сонця й перетворення ного в тепло. Саме цим пояснюється підвищення температури повітря над Землею бишє 20 кілометрів. Найвища температура виявляється на висоті близько 50 км, тобто там. де швидкість утворення та розпаду озону є найбільшою. Саме на цих висотах у результаті озонового циклу виділяється багато тепла.

Поглинання озоном ультрафіолету-В — не єдиний варіант його розпаду. В циклі утворення та знищення озону включені й гази, що наявні у незначних кількостях у атмосфері Землі. Наведемо приклад одного з таких процесів, найістотнішого для незабрудненого повітря. У ньому беруть участь моноксид азоту Р^О та діоксид азоту МОг, які утворюються в незначних кількостях внаслідок процесів, що відбуваються в зоні іоносфери Землі.

Процес виявляється циклічним: озон реагує з моноксидом азоту і потім утворюються кисень і діоксид азоту. Останній приєднує (тимчасово) атомарний кисень і розпадається на двохатомну молекулу кисню та молекулу моноксиду азоту:

          Оз+ NО  =  NО2 + О2,

          NO2 + О  =  NО + О2.

Результат — відновлення молекули моноксиду азоту та розклад молекул озону за такою спрощеною схемою Оз + О —> О2 + О2. Отже, молекула моноксиду азоту прискорює швидкість розпаду озону у стратосфері, не змінюючи свого хімічного стану. Тож моноксид азоту є каталізатором реакції розпаду озону в стратосфері Землі. До речі, не один лише моноксид азоту має такі властивості, про що йдеться далі.

Наслідком розглянутих вище процесів утворення та розпаду озону стає озоновий профіль атмосфери. Велика швидкість розпаду озону через поглинання ультрафіолетового випромінювання Сонця на висотах 40—90 км приводить до того, що максимальна його кількість спостерігається в межах 20—ЗО км, де число молекул в одному кубічному сантиметрі досягає 5 • 1012. При зменшенні висоти над рівнем моря густина озону зменшується, а середня кількість його молекул у кожному кубічному сантиметрі повітря біля поверхні Землі близька до 6 • 10". На перший погляд це здається досить великим числом. Насправді ж на рівні моря кожна молекула озону припадає на 25 млн інших молекул газів, що входять до складу атмосфери. Концентрація озону є найменшою внизу і чим вище він буде над рівнем, тим більше зростає (майже в 250 разів), досягаючи м мального значення в 10~5 на висоті 35 км. Там кожна з 100 тис. молекул — молекула озону, це теж не дуже багато. Хоч названий газ і має надлишкову енергію, але вона по собі не така вже й велика. При миттєвому розпаді озону на висотах його максимальної концентрації виділилася б така кількість енергії, якої вистачило б тільки на підвищення температури атмосфери в цій зоні на... 0,1 градуса. Велике ж підвищення температури повітря на цих висота пов'язане з виділенням за посередництвом озону енергії ультрафіолетової ділянки сонячного випромінювання.

Спостереження протягом десятиріччя за шаром озону переконують, що його середня товщина шару лишається практично сталою і лише в останні роки помітне повільне зменшення. А от його миттєва кількість над певним пунктом земної поверхні може змінюватися наполовину, а інколи й більше. Це пов'язано з горизонтальним переміщенням, підніманням або опусканням окремих повітряних мас з істотно різною концентрацією озону. Від однієї пори року до іншої кількість озону над певним місцем змінюється в межах 10 %, а середньорічна залежить від активності Сонця. 1989 рік був роком максимальної активності останнього і найбільшої кількості озону в атмосфері нашої планети. Точні виміри кількості озону вимагають акуратності та численних вимірів у багатьох точках Землі. Яка ж загальна кількість озону в озоновому щиті?  Надзвичайно мала: маса  Оз= 3 — 5-10т.

За одиницю кількості озону над даним місцем земної поверхні умовилися брати шар озону товщиною 0,01 мм (10 мікрометрів). Ця одиниця названа «добсон» (Дб) на честь професора Оксфордського університету Добсона, який заслужив повагу наукової громадськості своїми багаторічними вимірюваннями характеристик озонового шару. Зі сказаного вище випливає, що середня кількість озону становить від 200 до 300 добсонів. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            ФІЗИКО-ХІМІЧНІ ВЛАСТИВОСТІ ОЗОНУ

Це слово в перекладi з грецької мови означає «пахучий», «запашний», «той, що пахне». Кожен is нас вiдчував характерний рiзкий запах цього синюватого газу після грози з частими блискавкам чи при перебуванні бiля пристроїв або машин (в момент утворення iскор у відкритому повітрi). Втiм, що речовини перебувають у газовому станi лише при температурах, сприятливих для життя людини. Озон можна перетворити у рiдину при охолодженні до —111,9 "С, а при вищих температурах він перебуває вже в газоподiбному стані. Максимальна температура рідкого кисню (О2) при атмосферному тиску (температура його кипіння) становить—183 "С. 

  Хімічний елемент кисень існує в атмосфері в вигляді трьох алотропічних видоизмін: О2 — молекулярному, О — атомарному и О3 — трьохатомному, що власне і  називається озоном та утворюється при хімічному зєднанні перших двох. Тому більшість властивостей молекули озону можна зрозуміти краще, виходячи з властивостей молекулярного й атомарного кисню.

На основі вивчения спектральних властивостей озону були отримані дані про будову його молекули. Молекула О3 стала класичним прикладом використання спектральных даних для розрахунків довжин звязків та розмірів центрального кута. Відповідно до загальноприйнятої моделі молекули О..,, атоми в ній розташовуються у вершинах рівнобедреного тупокутного трикутника, причому відстані між атомами дорівнюють (1,278 ±0,003)-10"" см, а значення центрального кута складає 116°50' ±30'. Маса молекулы 0^3' складає 7,97.'1023 г.

В молекулу озону можуть входити атоми більш важких ізотопів кисню О17 и О18. За наближеними оцінками в атмосферному озоні знаходиться біля 0,21"" молекул О^О^О'" та 0,41 "о молекул О^О^О".

Газоподібний озон при стандартних температурі та тиску має щільність рдц = 2,144- 10"3 г-см"3. Теплоємність газу Ср зменшується із зниженням температури:  при  473 К с = = 904 Дж- кг-1. К-1, при 273 К с„ - 795 "Дж. кг-1- К-1, при 100 К Ср =-- 690 Дж.кг-^К-1.

Озон перетворюється на рідину при температурі 161,3 К (температура кипіння) в темно-синю рідину з щільністю 1,46 г-см~3. Питома теплота випаровування рідини 316 000 Дж-кг"1. При температурі 90 К рідкий озон має щільність 1,57 г см~3, а безпосередньо перед затвердінням його щільність складає 1,614 г-см~3. Температура затвердіння, за даними різних авторів, відрізняється на 2—3 К та складає приблизно 78 К. Тверда кристалічна структура має темно-фіолетовий колір.

Характерний запах озону відчувається при концентрации \0~^ °о. Деякі вважають присутність запаху озону показником чистоти повітря. Як показують біологічні й медичні досліди - озон — сильнодіюча отрута, що крім загальнотоксичної дії, ще має такі властивості як мутагенність, канцерогенність, радіомиметричний эффект). За токсичністю озон перевищує, наприклад, синільную кислоту.

Озоно-кисневі суміші вибухонебезпечні при концентраціях озону від 20 до 100%. Саме вибухонебезпечність концентрованних сумішей озону довгий час була основною перешкодою вивченню його фізичних та хімічних властивостей. Не дивлячись на те, що промислове виробництво озону існувало ще з початку XX ст., найбільш фундаментальні властивості його молекули були вивчені тільки в 50-х рр., коли в багатьох країнах були зроблені  спроби використання концентрованого озону як окиснювача в ракетних системах.

Потенціал іонізації озону 2,8 эВ, сродство до электрону за різними даними 1,9 ... 2,7 эВ, тобто достатньо сильно (більш сильне мають тільки фтор та його оксиди, а також нестабільні частки— атоми та вільні радикали).

Озон досить нестійкий у великих концентраціях може розкладатися з вибухом, тому цілком безпечне його зберiгання вимагає низьких температур. відомо, що людина не може iснувати в атмосферi з чистого кисню. Певний час, щоб зменшити масу своїх пiлотованих космiчних апаратiв, американці використовували r них чисто кисню атмосферу, але вiдмовилися вiд цього через надто велику небезпеку пожеж. До речi, людинi корнсна невелика концентрацiя озону в повiтрi, але велика кiлькiсть його стае смертельно небезпечною.

Дослiдженнями виявлено велику роль природних концентрацій озону (одна молекула озону на кілька десятків мільйонiв iншиx молекул повiтря) в окислювальних процесах, що вiдбуваються у клiтинах людського організму. Коли ж почали широко застосовувати очищене та кондиціоноване повiтря у робочих приміщеннях, то помітили незрозумiле пiдвищення кількості захворювань людей у порівнянні з мину-лим перiодом, коли вони дихали «неочищеним повiтрям». Не вiдразу, але знайшли причину—повна вiдсутнiсть озону в кондиціонованому повітрі зумовила розлади в організмі.

Пiдвищена окислювальна здатність озону все ширше використовується для обеззараження вiд шкiдливих мiкроорганiзмiв повiтря та питної води. Не обійшлось i без курйозiв. кiлька рокiв тому в наших газетах тривалий час писалося про спроби використання озону при зберiганнi картоплі та інших овочів. Критика з боку вчених, якi вказували, що такий активний окислювач, як озон, лише прискорює процеси розкладу речовин, що входять до складу картоплi  нічого не дали. Було втрачено чимало грошей, доки зрозуміли, що розв'язати проблему зберiгання овочів при замiнi повітря  у сховищах на озон не можна. 

Найчастiше озон одержують у великих кiлькостях при пропусканні електричного струму через сухий кисень. Електричний розряд розщеплює молекули кисню на двi частини — атоми кнсню:

            О2 = О+О

Звшьпеш атоми рухаються швидко i часто стикаються з двохатомними молекулами кисню, що при сприятливих умовах веде до утворення комплекса i3 трьох атомiв кисню молекул озону

                              О+ О2 = О3 

ОПТИЧНІ ВЛАСТИВОСТІ  ОЗОНУ

Енергію молекули можно представити як суму трьох частин — електронної, коливальної та обертальної енергій. Енергетичні стани, змінюються дискретним чином. Набори енергетичних станів індивідуальні для кожної молекули. Переходи молекули з одного енергетичного  стану в інший супроводжуються поглинанням або випромінюванням кванта електромагнітної енергії. Спектри, що виникають при таких переходах, залежать від молекулярних сталих, молекули, що поглинає або випромінює та  є своєрідною візитною карткою даної молекули. Для озону переходи між різноманітними електронними станами відбуваються при випромінюванні або поглинанні світла в видимій, ультрафіолетовій та так званій вакуумній ультрафіолетовій (нижче 2000 А) області спектра. Кожний електронний перехід супроводжується порівняно невеликими за енергіями змінами коливальних та вращательных станів молекули, через що електронно-коливально-обертальний спектр молекули представляє собю систему близько розташованих одна до одної смуг. Якщо при поглинанні світла молекула досягне збудженого стану, що має достатню енергію для того, щоб розірвати слабкий звязок в молекулі, то остання дисоціює. Для молекули озону енергія звязку (О—О2), розрив якої приводить до розпаду озону на молекулярний та атомарний кисень, складає 1,05 эВ.

Наибільш важливі смуги поглинання озону  лежать в діапазоні довжин хвиль 2000—3000 А (рис. ). Здатність газу поглинати випромінювання кількістно характеризується коефіцієнтом поглинання k в законі, який називають законом Беєра—Ламберта: 

                        I(v, х)=I(v,0)10-k(v)x  

де I(v, 0) — інтенсивність пучка монохроматичного світла частотою v, що приходить на вхідне вікно пристрою довжиною х, заповненого газом при даному тиску; I(v, х) — інтенсивність світла, що пройшов крізь пристрій..) Виміряна в см"' величина коефіцієнту поглинання k(v) в смугах поглинання Хартлі молекули озону розрахована за формулою та представлена на рис. 2 в вигляді залежності від довжини хвилі випромінювання, що надходить. Як і більшість інших смуг поглинання в молекулярній спектроскопії, ці смуги носять імя науковця, що відкрив їх. В максимумі поглинання k =135 см""', при товщині шару озону 0,3 см з формули (1) виходить, що відношення I(v, 0): I(v, х) буде рівно 1040! Це значить, що земний шар озону послабить сонячне випромінювання цієї довжини хвилі в 1040 разів, тобто практично поглине його повністю.

При довжинах хвиль більше 3000 А біля смуг Хартлі зявляються більш слабкі смуги Хаггінса та Шалона— Лефевра (рис. 2). Коефіцієнт поглинання  в цих смугах на декілька порядків менше, ніж у смуг Хартлі. Окремі близько розташовані в цих системах смуги мають добре видимі різкі  максимуми та мінімуми. В видимій частині спектру розташована на широка смуга Шаппюї, з якою повязаний синій колір озону. Сильне поглинання озону спостерігається в області вакуумного ультрафіолета (1000—2000 А). Разом з поглинанням в смугах Хартлі це  поглинання приводить до обриву сонячного спектру на поверхні Землі при довжинах хвиль менше 2900 А, що дуже важливо для захисту життя  на нашій планеті від короткохвильових випромінюваннь. Треб відмітити ,що величини коефіцієнтів поглинання суттєво змінюються з температурою.

Смуги, що відповідають коливально - обертальним переходам в молекулі озону, розташовані в інфрачервоній області спектру (3—15 мкм). Коефіцієнти поглинання в цих смугах змінюються в широких рамках. 

Первісним процесом фотохімічної реакції є  дисоціація молекули. При цьому в залежності від того в яких смугах поглинання відбулася фотодисоціація, кінцеві продукти фотореакції можуть відрізнятися між собою. При розкладенні світлом озону на молекулярний та атомарний кисень в залежності від енергії кванта, який було поглинуто (довжини хвилі поглинутого світла) атом та молекула кисню можуть бути як в основних, так і в збуджених станах.

Информация о работе Озон та життя