Основы биохимии белков и аминокислот в организме человека

Автор: Пользователь скрыл имя, 09 Марта 2012 в 08:24, реферат

Краткое описание

Белки – это высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Название протеины (от греческого proteos - первый, важнейший) отражает первостепенное значение этого класса веществ. Белкам принадлежит особая роль в воспроизводстве основных структурных элементов клетки, а также в образовании таких важнейших веществ как ферменты и гормоны.

Файлы: 1 файл

реферат биология.doc

— 66.00 Кб (Скачать)


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

 

Кафедра ЭТТ

 

 

 

 

 

 

РЕФЕРАТ

На тему:

 

«Основы биохимии белков и аминокислот в организме человека»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МИНСК, 2008


Белки – это высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Название протеины (от греческого proteos - первый, важнейший) отражает первостепенное значение этого класса веществ. Белкам принадлежит особая роль в воспроизводстве основных структурных элементов клетки, а также в образовании таких важнейших веществ как ферменты и гормоны.

Наследственная информация сосредоточена в молекуле ДНК клеток любых живых организмов, поэтому с помощью белков реализуется генетическая информация. Без белков и ферментов ДНК не может реплицироваться, самопроизводиться. Таким образом, белки являются основой структуры и функции живых организмов.

Все природные белки состоят из большого числа сравнительно простых структурных блоков – аминокислот, связанных друг с другом в полипептидные цепи. Белки представляют собой полимерные молекулы, в состав которых входит 20 различных АК. Поскольку эти АК могут объединяться в самой различной последовательности, то они могут образовывать громадное количество разнообразных белков и их изомеров.

Белки выполняют множество самых разнообразных функций:

Питательную, резервную. К таким белкам относятся так называемые резервные белки, являющиеся источником питания для развития плода (белок яйца, молоко). Ряд других белков используется в качестве источника АК, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы обмена веществ.

Каталитическую – за счет ферментов, биологических катализаторов.

Структурную – белки входят в состав органов, тканей, оболочек клеток (биомембран). Коллаген, кератин-в волосах и ногтях, эластин- в коже.

Энергетическую – при распаде белков до конечных продуктов образуется энергия. При распаде 1 г белка образуется 4,1 ккал.

Транспортную – белки обеспечивают снабжение тканей кислородом и удаление углекислого газа (гемоглобин), транспорт жирорастворимых витаминов - липопротеиды, липидов - альбумины сыворотки крови.

Белки выполняют функцию передачи наследственности. Нуклеопротеиды - белки, составными частями которых являются РНК и ДНК.

Защитная функция - (антитела, -глобулин) основную функцию защиты в организме выполняет иммунологическая система, обеспечивающая синтез специфических защитных белков - антител в ответ на поступление в организме бактерий, вирусов, токсинов. Кожа - кератин.

Сократительная функция - в акте мышечного сокращения и расслабления участвуют множество белков.. Главную роль играют актин и миозин - специфические белки мышечной ткани.

Гормональная - регуляторная. Обмен веществ в организме регулируется с помощью гормонов, ряд которых представлен белками или полипептидами (гормоны гипофиза, поджелудочной желез).

Таким образом, белкам принадлежит исключительная и разносторонняя роль в организме человека.

Основная структурная единица белка - мономер-аминокислота. Аминокислоты - органические кислоты, у которых водород у -углеродного атома замещен на аминогруппу NH2. Отдельные аминокислоты связаны друг с другом пептидными (R-CO-NH-R1) связями, возникающими при взаимодействии карбоксильных СООН и аминных NH2 групп АК. Пептидная связь - единственная ковалентная связь с помощью которой АК остатки соединяются друг с другом, образуя остов белковой молекулы. Существует еще только один важный тип ковалентной связи между АК в белках - дисульфидный мостик или поперечная связь между двумя отдельными пептидными цепями -S-S-.

Классификация аминокислот:

1. Ациклические АК - моноаминомонокарбоновые, содержат 1 -аминную и 1-карбоксильную группы:

L-глицин, L -аланин, L -серин, L -треонин, L -цистеин, L -метионин, L -валин, L -лейцин.

Моноаминодикарбоновые -содержат 1-аминную и 2 карбоксильные группы:

L-глутаминовая кислота, L-аспарагиновая кислота.

Диаминомонокарбоновые - содержат 2 аминные и 1 карбоксильную группы:

L-лизин и L-аргинин

 

2. Циклические аминокислоты

 

Имеют в своем составе ароматическое или гетероциклическое ядро:

фенилаланин, L-тирозин, L-триптофан, L-гистидин

Соединение состоящее из 2 АК – дипептид, состоящее из 3 АК- трипептид

Классификация белков: протеины – простые, состоят только из аминокислот (альбумины, глобулины, протамины, гистоны). При гидролизе распадаются только на АК.

Пример протеинов - альбумин, глобулины, коллаген, протамины, гистоны.

Протамины и гистоны - имеют своеобразный АК состав и представлены белками с небольшой молекулярной массой. В сотаве их 60-80% аргинина, они хорошо растворимы в воде. Скорее всего они являются пептидами, поскольку молекулярная масса не превышает 5000 дальтон. Являются белковым компонентом в структуре нуклеопротеидов.

Проламины и глютеины - белки растительного происхождения. Содержат 20-25% глутаминовой кислоты и 10-15% пролина.

Альбумины и глобулины- наиболее богаты этими белками сыворотка крови, молоко, яичный белок. мышцы. Оба эти класса относятся к глобулярным белкам. Соотношение альбуминов к глобулинам, получившее название белкового коэффициента в норме в крови сохраняется на постоянном уровне. Это соотношение при многих заболеваниях изменяется, поэтому определение его имеет важное практическое значение. Альбумины - 69 дальтон, а глобулины - 150000 дальтон.

Протеиды – сложные белки , состоят из белковой части и простетической группы (небелкового компонента).

Фосфопротеиды - содержат фосфорную кислоту. Липопротеиды – липиды. Гликопротеиды – углеводы. Металлопротеиды - металлы. Нуклеопротеиды содержат в качестве простетической группы нуклеиновые кислоты. Хромопротеиды – пигменты.

Гемопротеиды содержат в качестве простетической группы Fe. Порфирины содержат Mg. Флавопротеиды (содержат производные изоаллоксозина).

Все белки участвуют в фундаментальных процессах жизнедеятельности: фотосинтез, дыхание клеток и целостного организма, транспорт кислорода и углекислоты, окислительно-восстановительные реакции, свето- и цвето- восприятие. Например, хромопротеиды играют исключительно важную роль в процессах жизнедеятельности: достаточно подавить дыхательную функцию Hb путем введения окиси углерода, либо подавить утилизацию кислорода в тканях синильной кислотой или ее солями цианидами, как моментально наступает смерть.

Гемопротеиды - гемоглобин, миоглобин, хлорофиллсодержащие белки и ферменты (вся цитохромная система, каталаза и пероксидаза). Все они содержат в качестве небелкового компонента структурно схожее железо или магний порфирины, но различные по составу и структуре белки, обеспечивая тем самым разнообразие их биологических функций. Гемоглобин содержит в качестве белкового компонента глобин, а небелкового - гем.

Флавопротеиды содержат прочно связанные с белком простетические группы, представленные изоаллоксазиновыми производными ФМН и ФАД. Входят в состав оксидоредуктаз - ферментов, катализирующих окислительно-восстановительные реакции в клетке. Некоторые содержат ионы металлов (ксантиноксидаза, сукцинатдегидрогеназа, альдегидоксидаза).

Нуклеопротеиды - состоят из белков и нуклеиновых кислот, последние рассматриваются как простетические группы.

ДНП-дезоксирибонуклеопротеиды

РНП-рибонуклеопротеиды

Отличаются природой сахара (пентозы), это либо рибоза, либо дезоксирибоза. ДНП содержатся в основном в ядре клетки, а РНП в цитоплазме. ДНП присутствуют в митохондриях, а РНП - ядрах и ядрышках. Природа синтезированных в клетках белков зависит в первую очередь от природы ДНП, точнее ДНК, а свойства живых организмов определяются свойствами синтезированных белков. ДНК хранит наследственную информацию.

Липопротеиды - простетическая группа представлена липидом. В составе липопротеидов открыты нейтральные жиры, свободные жирные кислоты, фосфолипиды, холестериды. Широко распространены в природе (растения, животные ткани, микроорганизмы). Входят в состав клеточной мембраны, внутриклеточных биомембранах ядра, митохондрий, микросом, присутствуют в свободном состоянии в плазме крови. Липопротеиды участвуют в структурной комплексной организации миелиновых оболочек нервов, хлоропластов, палочек и колбочек сетчатки глаза.

Фосфопротеиды - казеиноген молока - в котором содержание фосфорной кислоты 1%. Вителлин, фосфовитин - содержатся в желтке куриного яйца. Овальбумин - в белке куриного яйца, ихтулин- в икре рыб. Много фосфолипидов содержится в ЦНС. Они содержат органически связанный лабильный фосфат и являются источниками энергетического и пластического материала в процессе эмбриогенеза. Также участвуют в процессах метаболизма.

Гликопротеиды- содержат углеводы или их производные прочно связанные с белковой молекулой: глюкоза, манноза, галактоза, ксилоза и т.д. В состав простетических групп входят мукополисахариды. Гиалуроновая и хондроитинсерная кислоты входят в состав соединительных тканей. Белки плазмы крови, за исключением альбуминов. Являясь составной частью клеточной оболочки участвуют в иммунологических реакциях, ионном обмене.

Металлопротеиды- биополимеры, содержащие помимо белка ионы какого-либо одного или нескольких металлов. Типичные представители - железосодержащие - ферритин, трансферрин и гемосидерин. Ферритин содержит 17-23% Fe. Сосредоточен в печени, селезенке, костном мозге, выполняет роль депо железа в организме. Железо в ферритине содержится в окисленной форме. Трансферрин - растворимый в воде железопротеид, содержащийся в основном, в сыворотке крови в составе -глобулинов. Содержание Fe - 0,13%. Служит физиологическим переносчиком железа. Гемосидерин-водорастворимый железосодержащий компонент, состоящий на 25% из нуклеотидов и углеводов. Содержится в ретикулоэндотелиальных клетках печени и селезенки. Биологическая роль изучена недостаточно.

Вторая группа - ферменты. для которых металл служит мостиком между белковым компонентом и субстратом и непосредственно выполняет каталитическую функцию.

Природные пептиды. Низкомолекулярные пептиды, естественно встречающиеся в организме и обладающие специфическими функциями. Разделяются:

1. Пептиды, обладающие гормональной активностью (вазопрессин, окситоцин, адренокортикотропный гормон)

2. Пептиды, принимающие участие в пищеварении (гастрин, секретин)

3. Имеющие своим источником 2-глобулярную фракцию крови (ангиотензин, брадикинин, калидин).

4. Нейропептиды.

Структура белка:

Каждый белок имеет в своем составе известное количество аминокислот, соединенных между собой в строго зафиксированной последовательности с помощью пептидных связей. Эта уникальная, специфичная для каждого белка последовательность АК определена как первичная структура белка.

Установлено, что полипепептидная цепь находится в молекуле белков в закрученном состоянии в виде альфа-спирали. Спирализация обеспечивается водородными связями, которые возникают между остатками карбоксильных и аминных групп, расположенных на противоположных витках спирали. Это- вторичная структура белка.

Пространственная упаковка альфа-спирали определяется как третичная структура белка. Основным видом связи, удерживающим спирали в определенном положении, является дисульфидная связь, которая возникает между двумя молекулами цистеина на разных участках спирали. Третичную структуру белка также стабилизируют различные ковалентные связи, силы Ван-дер-Ваальса. В зависимости от пространственного расположения полипептидных цепей (третичной структуры) молекулы белка могут иметь различную форму. Если полипептиды уложены в виде клубка, то такие белки называются глобулярными. Если в виде нитей – фибриллярными.

Четвертичная структура белка – это несколько индивидуальных полипептидных цепей, определенным образом связаны друг с другом (например, гемоглобин). Термином субъединица принято обозначать функционально активную часть молекулы белка. Многие ферменты состоят из двух или четырех субъединиц. Благодаря различным сочетаниям субъединиц фермент существует в нескольких формах – изоферментах.

Все белки обладают гидрофильными свойствами, т.е. имеют большое сродство к воде. Устойчивость белковой молекулы в растворе обусловлена наличием определенного заряда и водной (гидратной) оболочки. В случае удаления этих двух факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым. Обратимое осаждение белков (высаливание) - белок выпадает в осадок под действием определенных веществ. после удаления которых вновь может возвращаться в свое исходное нативное (природное) состояние. Необратимое осаждение характеризуется значительными внутримолекулярными изменениями структуры белка, что приводит к потере им нативных свойств. такой белок - денатурированный, процесс - денатурация.

Таким образом, под денатурацией следует понимать изменение уникальной структуры нативной молекулы белка, приводящее к потере характерных для нее свойств (растворимости, электрофоретической подвижности, биологической активности).

Информация о работе Основы биохимии белков и аминокислот в организме человека