Организация генома эукариот Эукариоты. Геном эукариот

Автор: Пользователь скрыл имя, 05 Февраля 2013 в 11:55, реферат

Краткое описание

Главная количественная особенность генетического материала эукариот – наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Если средний размер гена бактерий 1500 пар нуклеотидов (п.н.), а длина кольцевой молекулы ДНК хромосомы Е. coli и В. subtilis составляет свыше 1 мм, то в такой хромосоме могут разместиться около 3 тысяч генов.

Файлы: 1 файл

Организация генома эукариот.docx

— 23.72 Кб (Скачать)

Организация генома эукариот

Эукариоты. Геном эукариот.    

 

Количественные особенности генома эукариот

Главная количественная особенность  генетического материала эукариот –  наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Если средний размер гена бактерий 1500 пар нуклеотидов (п.н.), а длина кольцевой молекулы ДНК хромосомы Е. coli и В. subtilis составляет свыше 1 мм, то в такой хромосоме могут разместиться около 3 тысяч генов. Примерно такое число генов было экспериментально определено у бактерий по числу типов иРНК. Если это число умножить на средний размер гена, то получится, что около 95% генома бактерий состоит из кодирующих (генных) последовательностей. Остальные 5%, по-видимому, заняты регуляторными элементами. Иная картина наблюдается у эукариотических организмов. Например, у человека насчитывают приблизительно 50 тысяч генов (имеется в виду только суммарная длина кодирующих участков ДНК – экзонов). В то же время размер генома человека 3×10(три миллиарда) п.н. Это означает, что кодирующая часть его генома составляет всего 15…20 % от тотальной ДНК. Существует значительное число видов, геном которых в десятки раз больше генома человека, например некоторые рыбы, хвостатые амфибии, лилейные. Избыточная ДНК характерна для всех эукариот. В этой связи необходимо подчеркнуть неоднозначность терминов генотип и геном. Под генотипом следует понимать совокупность генов, имеющих фенотипическое проявление, тогда как понятие генома обозначает количество ДНК, находящееся в гаплоидном наборе хромосом данного вида. 

 

Нуклеотидные последовательности в геноме эукариот

В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фундаментальная особенность молекулярной структуры генома эукариот – нуклеотидные  последовательности  разной степени повторяемости. Это открытие было сделано с помощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот.

1.        Уникальные, т.е. последовательности, представленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.

2.        Низкочастотные повторы – последовательности, повторяющиеся десятки раз.

3.        Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся  сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши – 100, у кошки – 1000, у рыб и цветковых растений – тысячи), тРНК, гены рибосомных белков и белков-гистонов.

4.        Высокочастотные повторы, число которых достигает 10 миллионов (на геном). Это короткие (~ 10 пн) некодирующие последовательности, которые входят в состав прицентромерного гетерохроматина. 

 

Гетерогенность ДНК эукариот по нуклеотидному составу

У эукариот описаны некоторые особенности структуры ДНК, обусловленные спецификой нуклеотидного состава отдельных последовательностей. Так, встречаются расположенные в одной цепи блоки нуклеотидов, состоящих из нескольких десятков пуринов. Тогда комплементарная часть в другой цепи ДНК будет представлена пиримидинами. Подобные последовательности названы полипуриновыми (полипиримидиновыми) блоками.

Другой вид гетерогенности связан с неравномерностью содержания по длине  ДНК пар аденин–тимин (АТ–пары) и гуанин–цитозин (ГЦ–пары). Так, в геноме дрозофилы периодически встречаются последовательности длиной примерно в 100 п. н., на 85 % состоящие из АТ–пар. Поскольку аденин связан с тимином двумя водородными связями, а гуанин с цитозином — тремя, дестабилизирующие ДНК-воздействия будут легче инициировать расплетание дуплексов ДНК с образованием участков частичной денатурации в АТ-богатых областях. Поэтому последние рассматриваются в качестве сайтов инициации элементарных генетических процессов: репликации, транскрипции и рекомбинации.

В заключение отметим, что перечисленные  выше особенности молекулярной структуры ДНК эукариот не были предсказаны ни классической генетикой (за исключением, пожалуй, свойств гетерохроматина), ни моделью двойной спирали Уотсона и Крика. Они были раскрыты при исследовании структуры геномов различных эукариотических организмов физико-химическими методами. Функции большинства повторяющихся и уникальных последовательностей пока не определены. Однако вполне вероятно, что сама по себе молекулярная структура ДНК эукариот служит зеркалом генетической регуляции и эволюции высших животных и растений. 

 

Хроматин и компактизация хромосом

Основой генетического аппарата эукариот являются линейные хромосомы. В основе хромосомы лежит линейная двуспиральная  правозакрученная молекула ДНК, связанная  со специфическими белками-гистонами. Известно 5 типов гистонов: Н1, Н2А, Н2В, НЗ, Н4. В ядрах эритроцитов птиц Н1 частично замещается на Н5. У дрожжей отсутствует Н1, а у некоторых видов хламидомонад гистоны вообще не обнаружены. Гистоны отсутствуют также у мезокариот (одноклеточных организмов – динофлагеллят, ночесветок), в сперматозоидах некоторых рыб. Отсутствие гистонов в перечисленных случаях рассматривается как вторичное явление. Гистоны Н2 – Н4 эволюционно устойчивы: из 102 аминокислот Н4 наблюдаются различия лишь по 1-2 аминокислотам у высших растений, рыб и млекопитающих. Гистон Н1 весьма вариабелен, и даже в тканях одного организма встречается 3 – 6 вариантов этого белка.

Гистоны Н2 – Н4 образуют белковое ядро из 8 полипептидов (каждый гистон повторяется 2 раза). Вокруг этого ядра уложен участок ДНК длиной 140 пн, образующий 1,75 витка по периферии. Такая структура называется нуклеосома. Отдельные нуклеосомы – это дисковидные частицы диаметром около 10 нм. Закручивание ДНК вокруг нуклеосомы уменьшает ее длину в семь раз. Участки ДНК между нуклеосомами длиной 15…10 пн называются линкерами (связками). Структура линкеров стабилизируется с помощью гистона Н1.

Последовательность нуклеосом образует или еще одну спираль диаметром 25…20 нм (соленоид), или последовательность нуклеосомных группировок – нуклеомеров. Эти высшие структуры образуют петли или домены. Конденсация ДНК в структуре соленоида дополнительно (к нуклеосомному уровню) уменьшает ее длину в шесть раз. В интерфазных хромосомах путем еще одного цикла конденсации соленоиды образуют полые трубочки диаметром 200 нм, что уменьшает длину ДНК еще в 18 раз.

Описанная структура хромосом у эукариот обеспечивает их устойчивость и недоступность основной массы ДНК для химических мутагенов. При транскрипции, т.е. синтезе РНК, и репликации происходит деспирализация хромосом, что обеспечивает возможность контакта определенных участков ДНК с ДНК-полимеразой или РНК-полимеразой.

Определенные участки хромосом в ядре тесно связаны с ядерной  мембраной. Всегда связаны с мембраной  концевые (теломерные) участки и некоторые другие (интерстициальные) участки. Такие связи обеспечивают определенную структуру ядра и защищают хромосомы от разрушения ферментами-нуклеазами. Ю. С. Ченцовым и его сотрудниками открыта специальная частица, обеспечивающая связь хроматина с ядерной мембраной, которую предложено называть анкоросомой (якорной частицей).

В метафазе вследствие дальнейшей конденсации  возникает большая образованная дезоксинуклеопротеидом спираль диаметром около 600 нм. В результате строго упорядоченной иерархии спиралей, в основе которой лежит нуклеосома, в митозе и мейозе хромосомы эукариот совершают цикл компактизации — декомпактизации. Следствие этого цикла — укорочение метафазных хромосом по сравнению с размерами заключенной в них молекулы ДНК в 103…10раз. По-видимому, цикл компактизации—декомпактизации регулируется белками хроматина негистонового типа. Возможно, что некоторые из них выполняют и структурную роль, образуя элементы каркаса метафазных хромосом. 

 

Особенности репликации эукариотических хромосом

Как и у прокариот, репликация ДНК в клетках эукариотических организмов осуществляется полуконсервативно, о чем свидетельствует распределение Н-тимидиновой метки по сестринским хроматидам во втором и последующих митозах после инкубации клеток с радиоактивными предшественниками. Выяснено, что репликация у эукариот носит двунаправленный характер.

Принцип регуляции репликации ДНК  эукариот в онтогенезе был открыт английским цитогенетиком Г. Кэлланом в 1972 г. С помощью радиоавтографии меченных 3Н-тимидином волокон ДНК, полученных из клеток животных непосредственно на предметном стекле, Кэллан определил скорость репликации и расстояние между соседними центрами инициации в S-фазе соматических и эмбриональных клеток.

По первому показателю между  этими типами клеток больших различий не наблюдалось. Число сайтов инициации репликации было максимальным в раннем эмбриогенезе, минимальным в предмейотической S-фазе и промежуточным в соматических клетках. Эти данные в принципе были подтверждены позднее прямым электронно-микроскопическим анализом реплицирующейся ДНК из дробящихся яиц дрозофилы. Таким образом, суть регуляции процесса репликации у эукариот заключается в изменении числа сайтов инициации репликации. Этот механизм позволяет увеличить продолжительность фазы S (а, следовательно, всего митотического цикла) с 3,5 мин (на ранних стадиях дробления яиц дрозофилы) до десятков часов в предмейотической S-фазе. Упаковка ДНК и гистонов в нуклеосомы происходит в фазе S, поскольку гистоны синтезируются синхронно с репликацией ДНК. 

 

Переключение генов у эукариот

У эукариот опероны отсутствуют, и система управления активностью генов более сложная. Во-первых, у эукариот включаются не три гена (или чуть больше), а целые батареи генов. Во-вторых, регуляция активности генов происходит не за счет связывания оператора с белком–репрессором, а за счет спирализации и деспирализации хромосом. В-третьих, у эукариот регуляция работы генов происходит не по принципу «да–нет», а по принципу «больше–меньше».

У прокариот регуляторные участки составляют примерно 5 % от всей ДНК, а у эукариот длина регуляторных участков соизмерима с общей длиной структурных генов. Регуляторные белки у эукариот влияют не только на работу генов в одной хромосоме, но и на активность функционально сходных генов в разных хромосомах. Например, a- и b-цепи гемоглобина кодируются генами, расположенными в разных хромосомах. Однако количество a-цепей равно количеству b-цепей. Промоторы и операторы у эукариот могут быть удалены от структурных генов на значительное расстояние.

У многоклеточных эукариот в ходе онтогенеза из исходной клетки развивается целостный организм. На разных этапах онтогенеза в разных тканях с разной интенсивностью экспрессируются разные гены. Активность генов у эукариот регулируется разнообразными эндо- и экзогенными факторами, в том числе, и гормонами. Способность исходной клетки реализовывать генетическую информацию в ходе клеточных делений и дифференцировки клеток называется тотипотентностью. У растений тотипотентны и оплодотворенные яйцеклетки, и почти все соматические клетки. У животных тотипотентна только зигота (а также некоторые клетки низших беспозвоночных). Поэтому методы клонирования животных основаны на пересадке ядер из соматических клеток в энуклеированные яйцеклетки (то есть яйцеклетки с убитым ядром).

Выключение генов может быть обратимым и необратимым. У животных существует два типа дробления зиготы: недетерминированное (дифференцировка  клеток на поздних стадиях онтогенеза) и детерминированное (дифференцировка  клеток на самых ранних этапах дробления  зиготы). В первом случае можно пересадить ядро из клеток кишечного эпителия головастика в яйцеклетку с убитым с помощью ультрафиолетового  облучения ядром. Из такой синтезированной  клетки разовьется нормальная лягушка. Во втором случае клетки передней части  бластодермы дрозофилы способны формировать только структуры передней части тела имаго, а клетки задней части бластодермы – только структуры  задней части тела.


Информация о работе Организация генома эукариот Эукариоты. Геном эукариот