Автор: Пользователь скрыл имя, 06 Октября 2011 в 14:26, контрольная работа
1.Этапы развития биотехнологии. Особенности современного этапа, место биотехнологии в системе наук общебиологического назначения.
2. Биотехнология производства генно-инженерных вакцин.
3. Понятие целевой продукт. Общая характеристика целевых продуктов в биотехнологическом производстве.
Вопросы
1.Этапы развития биотехнологии. Особенности современного этапа, место биотехнологии в системе наук общебиологического назначения.
2. Биотехнология производства генно-инженерных вакцин.
3.
Понятие целевой продукт.
Общая характеристика
целевых продуктов в
биотехнологическом
производстве.
1.Этапы
развития биотехнологии.
Особенности современного
этапа, место биотехнологии
в системе наук общебиологического
назначения.
Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году.
Использование в промышленном производстве микроорганизмов или их ферментов, обеспечивающих технологический процесс известны издревле, однако систематизированные научные исследования позволили существенно расширить арсенал методов и средств биотехнологии.
Так, в 1814 году петербургский академик К. С. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.
В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения.
Первый антибиотик — пенициллин — удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.
Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продукты их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.
Биотехнологией часто называют применение генной инженерии в XX–XXI веках, но термин относится и более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.
До 1971 года термин «биотехнология» использовался, большей частью, в пищевой промышленности и сельском хозяйстве. С 1970 года учёные используют термин в применении к лабораторным методам, таким, как использование рекомбинантной ДНК и культур клеток, выращиваемых in vitro.
Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах — химической и информационной технологиях и робототехнике.
Области
применения биотехнологии
представлены в табл. 7-1.
В настоящее время разработаны
способы получения более 1000
наименований продуктов
биотехнологическими
способами. В США совокупная
стоимость этих продуктов
в 2000 г. оценивается
в десятки миллиардов
долларов. Все отрасли,
в которых может быть
использована биотехнология,
перечислить практически
невозможно.
Области использования биотехнологии
|
2. Биотехнология производства генно-инженерных вакцин.
Производство продуктов микробного синтеза — безусловно, одно из самых развитых направлений современной промышленности. Однако многие достижения современной биотехнологии связаны не только с использованием метаболитов микробов. Многие проблемы медицины, пищевой промышленности, сельского хозяйства решаются с применением организмов с модифицированном геномом.
Несмотря на то, что первые успешные опыты по трансформации клеток экзогенной ДНК были поставлены ещё в 1940-е года Эйвери, Маклеодом и Маккарти, первый коммерческий препарат человеческого рекомбинантного инсулина был получен только в 1970-е года. Введение чуждых для генома бактериальных клеток генов производят с использованием т. н. векторных ДНК, например плазмиды, присутствующие в бактериальных клетках, а также бактериофаги и другие мобильные генетические элементы могут быть использованы в качестве векторов для переноса экзогенной ДНК в клетку реципиента.Получить новый ген можно:а) Вырезанием его из геномной ДНК хозяина при помощи рестрицирующей эндонуклеазы, катализирующей разрыв фосфодиэфирных связей между определёнными азотистыми основаниями в ДНК на участках с определённой последовательностью нуклеотидов;б) Химико-ферментативным синтезом;в) Синтезом кДНК на основе выделенной из клетки матричной РНК при помощи ферментов ревертазы и ДНК-полимеразы, при этом изолируется ген, не содержащий незначащих последовательностей и способный экспрессироваться при условии подбора подходящей промоторной последовательности в прокариотических системах без последующих модификаций, что чаще всего необходимо при трансформации прокариотических систем эукариотическими генами, содержащими интроны и экзоны.
После этого обрабатывают векторную молекулу ДНК рестриктазой с целью образования двуцепочечного разрыва и в образовавшуюся «брешь» производится «вклеивание» гена в вектор используя фермент ДНК-лигазу, а затем такими рекомбинантными молекулами трансформируют клетки реципиента, например клетки кишечной палочки. При трансформации с использованием в качестве вектора например плазмидной ДНК необходимо, чтобы клетки были компетентными для проникновения экзогенной ДНК в клетку, для чего например используют электропорацию клеток реципиента. После успешного проникновения в клетку экзогенная ДНК начинает реплицироваться и экспрессироваться в клетке.
Традиционные методы производства вакцин основаны на применении ослабленных или убитых возбудителей. В настоящее время многие новые вакцины (например, для профилактики гриппа, гепатита В) получают методами генной инженерии. Противовирусные вакцины получают, внося в микробную клетку гены вирусных белков, проявляющих наибольшую иммуногенность. При культивировании такие клетки синтезируют большое количество вирусных белков, включаемых впоследствии в состав вакцинных препаратов. Более эффективно производство вирусных белков в культурах клеток животных на основе технологии рекомбинантных ДНК. С использованием микроорганизмов получают также лимфокины (ИЛ-2, факторы роста, миелопептиды). Важное направление биотехнологии — культивирование растительных клеток, образующих БАВ. Подобный подход отменяет необходимость в закладке больших плантаций лекарственных растений и связанные с этим проблемы {уход за посевами, профилактика болезней лекарственных растений), позволяя получить нужные препараты более дешёвыми методами. Таким образом получают БАВ женьшеня, строфанта и других растений.
3.
Понятие целевой продукт.
Общая характеристика
целевых продуктов в
биотехнологическом
производстве.
Последний период эры предыстории современных биотехнологий (10-е – 40-е годы XX века) условно можно подразделить на два этапа. На первом этапе, в начале его, в основном, происходило усовершенствование
технологии существующих производств, а затем, благодаря успехам
микробиологии, биохимии и других наук того периода, в результате принципиальных усовершенствований аппаратуры и технологий возникла основа для организации новых производств. В этот период стали выпускать новые экологически чистые биоудобрения и биологические препараты для борьбы с вредителями и болезнями сельскохозяйственных растений, возникли производства ряда целевых продуктов (органических растворителей, спиртов), начались промышленные испытания биотехнологических процессов переработки и использования растительных отходов. Второй этап данного периода тесно связан с биотехнологическими методами получения ряда сложных веществ – антибиотиков, ферментов, витаминов.