Контрольная работа по "Биотехнологии "

Автор: Пользователь скрыл имя, 22 Октября 2014 в 20:13, контрольная работа

Краткое описание

1. Три периода развития биотехнологии.
В развитии биотехнологии выделяют следующие периоды:
эмпирический,
научный,
современный (молекулярный).
Последний специально отделяется от предыдущего, так как биотехнологи уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

Файлы: 1 файл

биотехнология.docx

— 34.48 Кб (Скачать)

Министерство сельского хозяйства РФ

Новосибирский государственный аграрный университет

Биолого – технологический факультет

Кафедра экологии и микробиологии

 

 

 

Контрольная работа по биотехнологии

 

 

                                                                    

 

 

 

 

                                                                            Выполнил:

                                                                                       студент 2507 группы 

                                                                                           Шмыгановский А. В.

                                                                            Проверила:

                                                                                 Литвина Л. А.

 

 

 

 

Новосибирск 2011

  1. Три периода развития биотехнологии.

В развитии биотехнологии выделяют следующие периоды:

эмпирический,

научный,

современный (молекулярный).

Последний специально отделяется от предыдущего, так как биотехнологи уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

1) Эмпирическая биотехнология неотделима  от цивилизации, преимущественно  как сфера производства (с древнейших  времен -- приготовление теста, получение  молочнокислых продуктов, сыро-, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка растительных волокон). В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим аппаратом. Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.

2) Быстрое развитие биотехнологии  как научной дисциплины с середины XIX в. было инициировано работами Л. Пастера (1822 -- 1895).

Именно Л.Пастер ввел понятие биообъекта, не прибегая, впрочем, к такому термину, доказал «живую природу» брожений: каждое осуществлявшееся в производственных условиях брожение (спиртовое, уксусно-, молочнокислое и т.д.) вызывается своим микроорганизмом, а срыв производственного процесса обусловлен несоблюдением чистоты культуры микроорганизма, являющегося в данном случае биообъектом.

Позднее, приступив к работам в области медицины, Л. Пастер исходил из своей концепции о причине заразных болезней, сводя ее в каждом случае к конкретному, определенному микроорганизму. Хотя техника того времени не позволяла увидеть возбудителя инфекции, как, например, в случае вируса бешенства, однако Л.Пастер считал, что «мы его не видим, но мы им управляем». Целенаправленное воздействие на возбудителя инфекции (в целях ослабления его патогенности) позволяет получать вакцины.

3) Современная биотехнология, основанная  на достижениях молекулярной  биологии, молекулярной генетики  и биоорганической химии (на практическом  воплощении этих достижений), выросла  из биотехнологии Л.Пастера и, являясь также строго научной, отличается от последней прежде всего тем, что способна создавать и использовать в производстве неприродные биообъекты, что отражается как на производственном процессе в целом, так и на свойствах новых биотехнологических продуктов.

  1. Способы получения аминокислот.

 

 Аминокислоты играют  большую роль в здравоохранении, животноводстве и легкой промышленности. По значению для макроорганизма аминокислоты подразделяют на заменимые и незаменимые. К незаменимым относятся те аминокислоты, которые не синтезируются в животном или человеческом организме, они должны быть привнесены с пищей или кормом для животным (табл. 1 ).

 

Таблица 1

Заменимые и незаменимые аминокислоты.

Незаменимые

Заменимые

Аргинин

Аланин

В алии

Аспарагин

Гистидин

Апарагиновая кислота

Изолейцин

Глицин

Лейцин

Глутамин

Лизин

Глутаминовая кислота

Метионин

Пролин

Треонин

Серии

Триптофан

Тирозин

Фенилаланин

Цистеин


 

Заменимые синтезируются in vivo из аммиака и различных источников углерода. Микроорганизмы сами синтезируют все необходимые им аминокислоты из аммиака и нитратов, а углеродные « скелеты » - из соответствующих интермедиаторов.

Исходя из оценки аминокислот, ученые давно стремятся использовать способности микроорганизмов продуцировать заменимые и незаменимые аминокислоты в ощутимых количествах.

Потребность людей в аминокислотах достаточно велика и этим определяется уровень их производства в мире (порядка 500 тыс. тонн в год).

Большинство микроорганизмов и зеленые растения способны синтезировать de novo все двадцать аминокислот. Углеродные скелеты аминокислот образуются из промежуточных продуктов обмена.

Исходным материалом для синтеза аминокислот служат простые промежуточные продукты катаболизма (пируват, 2 - оксиглутарат, оксалоацетат и фумарат, эригрозо - 4 - фосфат, рибозо - 5 - фосфат и АТР ). При синтезе большинства аминокислот аминогруппа вводится только на последнем этапе путем трансаминирования. Некоторые аминокислоты образуются в результате ряда превращений других аминокислот, и в этих случаях трансаминирование не требуется.

Белки синтезируются на рибосомах из аминокислот по информации м - РНК, которая переписана (путем транскрипции ) с генов ДНК.

БИОСИНТЕЗ АМИНОКИСЛОТ

Технология получения аминокислот базируется на принципах ферментации продуцентов и выделении вторичных метаболитов, то есть размножают маточную культуру вначале на агаризованной среде в пробирках, затем - на жидкой среде в колбах, инокуляторах и посевных аппаратах, а затем в головных (основных ) ферментаторах. Обработку культуральных жидкостей и выделение аминокислот проводят по схеме, аналогичной схеме получения антибиотиков. Изолированные чистые кристаллы целевого продукта обычно высушивают под вакуумом и упаковывают.

 Одноступенчатый метод  получения аминокислот

Известны два способа получения аминокислот: одноступенчатый и двухступенчатый. Согласно первому способу, например, мутантный полиауксотрофный штамм - продуцент аминокислоты культивируют на оптимальной для биосинтеза среде. Целевой продукт накапливается в культуральной жидкости, из которой его выделяют.

Двухступенчатый метод получения аминокислот

В двухступенчатом способе микроб - продуцент культивируют в среде, где он получается и синтезирует все необходимые ингредиенты для последующего синтеза ( в идиофазу ) целевого продукта.

Если ферменты биосинтеза аминокислоты накапливаются внутриклеточно, но после 1 - ой ступени клетки сепарируют, дезинтегрируют и применяют клеточный сок. В других случаях для целей биосинтеза целевых продуктов применяют непосредственно клетки.

Промышленное производство аминокислот осуществляется двумя способами: микробиологическим и химическим.

1 Микробиологический синтез

Микробиологический синтез основан на выращивании определенных видов микроорганизмов на питательных средах, имеющих подходящий источник углерода. Чаще всего это сахара, содержащиеся, например, в патоке. Мутированные микроорганизмы с нарушенным азотным обменом выделяют в раствор большое количество какой-либо одной аминокислоты. После окончания процесса ферментации аминокислоту выделяют из раствора химическими методами

Путем микробиологической ферментации получают основное количество глутаминовой кислоты и весь лизин. У этого процесса свои преимущества и свои недостатки. С одной стороны, в нем мало стадий и требуется относительно простая и универсальная аппаратура. С другой стороны, живые микроорганизмы, с которыми приходится работать, очень чувствительны к малейшему изменению условий, а концентрация целевого продукта получается низкой, что ведет к увеличению размеров аппаратуры.

Существует способ микробиологического получения фенилаланина при помощи тирозин - и метиониндефицитного мутанта Brevibacterium lactofermentum. В периодическом процессе ферментации достигнута концентрация продукта 24,8 г/л. Однако для данного процесса требуются сложные и дорогие среды. Определенный интерес представляют биосинтез фенилаланина ауксотрофным мутантом Е. coli, который можно культивировать в глюкозной среде с фосфатами. Процесс ферментации осуществляют доливным методом с рециркуляцией биомассы. Биомасса в реакторе 60 - му часу достигает 45 - 50 г/л, а концентрация фенилаланина - 22,4 - 22,8 г/л. Продуктивность системы 0,72-0,86 г/( лч ); выход продукта 0,11г.

2.Химический синтез

Химический синтез более универсален, чем микробиологический, и позволяет получать соединения любой возможной структуры. Здесь используется непищевое минеральное сырье, достигается любая концентрация продукта, однако, как правило, процесс многостадиен и требует более сложной аппаратуры.

Оба способа обеспечивают получение природных аминокислот необходимой степени химической и оптической чистоты. Так что в конечном счете, когда речь идет о промышленном производстве, последнее слово остается за экономикой: по данным зарубежных специалистов, при больших масштабах химические методы становятся более рентабельными.

Наиболее широко разработан промышленный синтез метионина- аминокислоты, главным потребителем которой является птицеводство. Исходным веществом служит пропилен - продукт крекинга нефти. Пропилен окисляется до акролеина, который в результате серии реакций, превращается в рацемический метионин.

Усилие многих исследователей направлены также на разработку такого химического синтеза, который давал бы только один желаемый природный оптически активный изомер - изомер, синтезируемый живой природой, - ассиметрического синтеза. В этом направлении за последние годы достигнуты серьезные успехи. В работах А. Кагана (Франция ) и Е, Корна ( США ) достигнуты практически количественные оптические выходы. Чрезвычайно заманчивым представляется воспроизведение путей синтеза аминокислот природными ферментными системами. Большое количество таких синтезов осуществляется пироксальзависимыми ферментами, причем сразу получается нужный оптический изомер аминокислоты. Большой вклад в изучение этих процессов сделан академиком А.Е. Браунштейном (Россия) и профессором Ю. Снеллом (США).

  1. Характеристика целлюлаз и их использование для получения белка.

Целлюлозолитические системы, состав и активность их отдельных компонентов, продуцируемые различными микроорганизмами, варьируют в широких пределах. В настоящее время наиболее перспективными продуцентами целлюлаз с точки зрения промышленного использования являются грибы следующих родов: Aspergillus, Coriolus, Eupenicillium, Fusarium, Penicillium, Physarium, Sporotrichum, Trichoderma, Verticillium.

Среди грибов, способных расщеплять кристаллическую целлюлозу, только некоторые продуцируют полные внеклеточные целлюлолитические системы (эндо- и экзоглюканазы, β-глюкозидазу). Среди них Trichoderma viride, T. reesei, T. koningii, Penicillium funiculosum, Fusarium solani. Для культуральной жидкости большинства других грибов этой группы характерно отсутствие экзоглюканазы, то есть эти грибы могут деградировать более аморфные формы целлюлозы.

Деградация высокоупорядоченной формы целлюлозы осуществляется благодаря синергическому действию комплекса целлюлолитических ферментов. При любой комбинации экзо- и эндоглюканаз Trichoderma koningii, Fusarium solani, Penicillium и Funiculosum отмечается выраженный синергизм. Однако синергизм между экзоглюканазами этих грибов и эндоглюканазами грибов, не продуцирующих экзоглюканазу (Myrothecium verrucaria), не выявлен. Нет также синергизма между экзоглюканазами грибов и эндоглюканазами рубцовых бактерий. Последнее указывает на существенные различия целлюлолитических систем грибов и бактерий.

В природе в процессе фотосинтеза производится большое количество целлюлозы, в результате возникли многие виды целлюлолитических микроорганизмов. В почве целлюлозная и гемицеллюлозная части биомассы разлагаются интенсивнее, чем лигнин, и быстро метаболизируются почвенными микроорганизмами. Показано, что целлюлаза из Trichoderma viride образует с гуминовыми кислотами комплекс, стабильный в почвенных условиях. При внесении азота в почву разложение лигнина и целлюлозы ускоряется. Добавление глюкозы вызывает обратный эффект. Окончательный продукт деградации целлюлозы – углекислый газ, но если процесс протекает в анаэробной среде, образуется также метан.

 Изыскивая пути исусственного получения белка, ученые интенсивно изучают механизм его синтеза в организмах. Ведь здесь он совершается в «мягких» условиях, удивительно четко и с большой скоростью. (Молекула белка в клетке образуется всего за 2—3 с.) Выяснено, что синтез белков в организме осуществляется с участием других высокомолекулярных веществ—нуклеиновых кислот. В настоящее время человек уже глубоко познал механизм биосинтеза белка и приступил к искусственному получению важнейших белков на основе тех же принципов, которые столь совершенно отработаны в процессе развития органического мира.

Информация о работе Контрольная работа по "Биотехнологии "