Клонирование растение

Автор: Пользователь скрыл имя, 20 Декабря 2010 в 14:30, реферат

Краткое описание

Клонирование, прежде всего, изначально относится к вегетативному размножению. Клонирование растений черенками, почками или клубнями известно уже более 4 тысяч лет. Начиная с 70-х гг. нашего столетия для клонирования растений стали широко использовать небольшие группы и даже соматические (неполовые) клетки.

Дело в том, что у растений в отличие от животных по мере их роста, в ходе клеточной специализации – дифференцировки – клетки не теряют так называемые тотипотентные свойства, то есть, не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившее в процессе дифференцировки своё ядро, может дать начало новому оргазму. Эта особенность растительных клеток лежит в основе многих методов генетики и селекции.

Файлы: 1 файл

доклад клонирование.docx

— 44.97 Кб (Скачать)

Таким  образом,  во  многих  работах  показано, что  в  случаи  амфибий  донорами  ядер  могут  стать  лишь  зародыши  на  ранних  стадиях  развития.. Некоторые  авторы  называют  подобные  эксперименты  клонированием  амфибий, хотя  правильнее  их  называть  клонированием  эмбрионов  амфибий, так  как  в  этом  случае  размножают  бесполым  путём  не  взрослых  животных, а  их  зародышей.

Дифференцировка  клеток  в  ходе  развития  позвоночных  сопровождается  инактиваций  неработающих  генов, поэтому  клетки  теряют  тотипотентность, дифференцировка  становится  необратимой. В  конце  концов,  у  одних  клеток  происходит  репрессирование  генома, у  других  в  той  или  иной  степени  деградирует  ДНК, а  в  некоторых  случаях  разрушается  даже  ядро. Однако  на  ряду  с  дифференцируемыми  клетками, культивируемыми  in  vitro  клеточные популяции содержат  малодифференцируемые  стволовые клетки, которые и могут быть   использованы  как доноры  ядер  для клонирования  млекопитающих.

Опыты  с  амфибиями  показали, что  ядра  различных  клеток  одного  и  того  же  организма  генетически  идентичны  и  в  процессе  дифференцирвки  постепенно  теряют  способность  обеспечивать  развитие  реконструированных  яйцеклеток, однако  серийные  пересадки  ядер  и  культивирование  клеток  in  vitro  в какой-то  степени увеличивают эту способность.

       

Неудачи  экспериментов  с  мышами. 

Успешные  опыты  с  амфибиями  заставили  задуматься  учёных  о  клонировании  млекопитающих, в  частности  мышей.

МакКиннелл  в  одной  из  своих  работах  отмечал, что  необходимые  для  этого  методы  уже  существуют  и  непонятно  почему  мышь  до  сих  пор  не  клонирована.

Однако  предсказания  МакКиннелла  не  сбылись, хотя  в  конце  70-х   гг.  опыты  на  мышах  действительно  начались  и  протекали  весьма  драматично. К  тому  времени  весьма  основательно  были  изучены  биология  и  генетика  ранних  этапов  развития  млекопитающих  и  в  частности  мыши  как  модельного  объекта.

Работа  методически  оказалась  довольно   трудной, прежде  всего,  потому  что  объём  яйцеклетки  у  млекопитающих  примерно  в  тысячу  раз  меньше, чем  у  амфибий. Однако  эти  трудности  были  успешно  преодолены. Экспериментаторы  научились  успешно  микрохирургическим  путём  удалять  пронуклеусы  (одно  из  двух  гаплоидных  ядер  в  яйце  млекопитающих, в  период  после  проникновения  сперматозоида, но   до  слияния  женского  и  мужского  пронуклеусов  в  ядро  зиготы  в  процессе  оплодотворения. Мужское  ядро  формируется  из  ядерного  материала  сперматозоида, женское  из  хромосом  яйцеклетки)  из  зигот  мыши  и  пересаживать  в  них  клеточные  ядра  ранних  эмбрионов. Однако  все  полученные  разным  способом  зародыши  мышей  развивались  лишь  до  стадии  бластулы. 
 
 
 

В  1977  году  появилось  сенсационное  сообщение  Хоппе  и  Илменсе  о  том, что  они  получили  7  взрослых  самок  мышей, пять  из  которых  имели  только  материнский, а  две  отцовский  геном. Это, якобы, зависело  от  того,  какой  пронуклеус  был  оставлен  в  яйце – женский  или  мужской, он  и  определял  особи  по  типу  гиногенеза  или  андрогенеза  (гиногенез –  развитие  яйца  без  участия  сперматозоида, андрогенез – развитие  яйца, имеющие  только 

отцовские  хромосомы – мужской  партеногенез).

Их  успех  был  связан, по  описанию  авторов, с  тем, что,  удаляя  один  пронуклеус, они  удваивали  число  хромосом   другого, обрабатывая  яйца  специальным  веществом, затем  выращивали  полученные  диплоидные  гомозиготные  зародыши  in  vitro  до  стадии  бластулы  и пересаживали  в матку самки-реципиента  для дальнейшего развития.

Казалось, теперь  можно  будет  быстро  получить  млекопитающих  со  100%  гомозиготностью  по  всем  признакам. Это  особенно  важно  для  селекции, так  как  для  получения  сельскохозяйственных  животных, в  частности  крупного  рогатого  скота  с  закреплёнными  особо  ценными  качествами  обычными  приёмами  требуются  десятки  лет  работы.

Однако  данные  Хоппе  и  Илменси  подтвердить  не  удалось, хотя  многие  пытались  это  сделать. Оказалось, что  полученные  любым  способом  диплоидные  андрогенетические  и  гиногенетические  зародыши  мышей  погибают,  а  тех  же  стадиях, что  и  диплоидные  партеногенетические  (развивающиеся  из  неоплодотворённой  яйцеклетки)    эмбрионы.

Значительно  усовершенствовав  методы  извлечения  ядер  и  введения  их  в  клетку, МакГрат   и  Солтер  провели  свою  серию  экспериментов  и  сообщили, что  высокий  выход  живых  мышей  они  получили, когда  в  качестве  доноров  ядер  они  использовали  зиготы, но  если  донорами  были  ранние  эмбрионы, то  реконструированные  яйцеклетки, как  и   прежде, развивались  только  до  стадии  бластулы.

Метод  МакГрата - Солтера  стал  широко  использоваться  разными  экспериментаторами. Так  Манн  и  Ловел-Банж  выделяли  пронуклеусы  яиц, активированных  к  партеногенезу, и  пересаживал  их  в  энуклеированные  зиготы  мышей. В  этих  случаях  эмбрионы  погибали  на  ранних  стадиях. Если  же, наоборот, пронуклеусы  получали  из  оплодотворённых  яиц  и  пересаживали  в  партеногенетические  и  лишённые  ядра  яйца, то   такие  зародыши  развивались  нормально  до  рождения.

Сурани  с  соавторами  установили, что  если  добавить  женские  пронуклеус   из  зиготы  мыши  к  гаплоидному  набору  хромосом  яйцеклетки, то  нормального  развития  не  происходит, добавление  же  мужского  ядра  приводит  к  нормальному  развитию. С    другой  стороны, рекомбинация  женского  и  мужского  пронуклеусов  из  ранних  оплодотворённых  яйцеклеток  мышей  обеспечивает  нормальное  развитие, а  комбинация  2-х  мужских  или  2-х  женских  пронуклеусов  останавливает развитие  эмбриона.

Эти  опыты  показали, что  для  нормального  развития  млекопитающих  требуется  два  набора  хромосом – отцовский  и  материнский. Поэтому  ни  у  одного  из  известного  вида  млекопитающих  не  описан  партеногенез. Поэтому  же  работы  Хоппе  и  Илменсе  не  удалось  повторить.

Однако  такие  исследование  ещё  дважды  будоражили  научное  сообщество. В  1982  году  пересадили  ядра  клеток  партеногенетических  бластул  мышей  в   энуклеированные  зиготы. Некоторые  из  этих  реконструированных  яйцеклеток  нормально  развивались, и  якобы  получены  четыре  взрослых  самки, но  в  свете  вышесказанного  эти  результаты  маловероятны.

Гибель  партеногенетических  (гиногенетических и  андрогенетических)  зародышей  у  млекопитающих  связана  с  различной  активацией  онтогенеза  материнского  и  отцовских  геномов. Механизм, регулирующий  эти  функциональные  различия, был  назван  геномным  импритингом  и  изучался  в  ряде  работ, где  было  показано, что  для  нормального  развития  млекопитающих  требуется  наличие  мужского  генома.

Другая  статья  Илменсе  и  Хоппе  имела  ещё  больший  резонанс. Авторы  сообщили  о  пересадки  ядер  внутренней  клеточной  массы   бластулы  в  энуклеированные  зиготы  мышей  и  получения  трёх  взрослых  особей  (двух  самок  и  одного  самца), генетически  идентичной  донорской  линии  мышей. Введение  ядер-доноров  и  удаление  пронуклеусов  из  зиготы  проводили  за  один  приём, затем   
 
 
 
 
 
 

реконструированные  яйцеклетки  культивировали  in  vitro   до  стадии  бластулы и пересаживали  в матку самок. Из  16  пересаженных  бластул три развились во  взрослые  особи. В следующей работе  эти же  авторы  использовали  в качестве  доноров-ядер  клетки  эмбрионов ещё более поздней стадии (семь  суток)  и будто бы  получили  трёх  половозрелых  мышей. Однако  никто из  работающих  в том же  направлении не  смог  добиться  подобных  результатов, и достоверность результатов Илменсе и Хоппе вновь была  поставлена  под сомнение.

МакГрат  и  Солтер  показали, что  ядра  8-клеточных  зародышей  и  клеток  внутренней  клеточной  массы  бластулы  не  обеспечивают  развития  in  vitro  реконструированных  яйцеклеток  даже  до  стадии  морулы, которая предшествует  стадии  бластулы. Наибольшая  часть (5%) 4-клеточных зародышей даёт  возможность развиваться только  до  стадии  морулы. В тоже  время 19%  реконструированных  яйцеклеток  2-ядерных клеточных зародышей, смогли  спокойно  достичь стадии  морулы  или бластулы.

Эти  и  другие  данные  показывают, что  в  эмбриогенезе  у  мышей  клеточное  ядро  рано  теряет  тотипотентность, что  связано, очевидно, с  очень  ранней  активизацией  генома  зародыша – уже  на  стадиях  двух  клеток. У  других  млекопитающих, в  частности  у  кроликов, овец  и  крупного  рогатого  скота, активизация  первой  группы  генов  в  эмбриогенезе  происходит  позднее, на  8-16  клеточной  стадии. Возможно,  поэтому  первые  значительные  успехи  в  клонировании  животных  были  достигнуты  на  других  видах  млекопитающих, а  не  на   мышах.Тем  не  менее,  особый  интерес  вызывают  опыты  группы  учёных  из  университета  в  Гонолулу  во  главе  с  Риузо  Янагимачи. Авторам  удалось  усовершенствовать  метод  Уилмута, о  котором  речь  пойдёт  ниже, они  отказались  от  электрической  стимуляции  слияния  донорской  соматической  клетки  с  яйцеклеткой  и изобрели  такую  микропипетку, с  помощью  которой  можно  было  бы  безболезненно  извлекать ядро  из  соматической  клетки  и  трансплантировать  его  в  обезъядренную  клетку. Кроме  того, авторы  использовали  в  качестве  донорских  относительно  менее  дифференцированные  ядра  клеток, окружающих  ооцит.  Наконец, удалось,  как  бы  синхронизировать  процессы, протекающие  в  яйцеклетке  и  трансплантируемом  в  нём  ядре, что  позволило  обеспечить  естественные  ядерно-цитолазматические  взаимоотношения  между  ядром  и  цитоплазмой, поскольку  трансплантируемое  дифференцированное  в  определённом  направлении  ядро  и  цитоплазма  яйцеклетки  до  того  работали  как  бы  в  разных  режимах.

Авторы  использовали  для  трансплантации  ядра  клеток, окружающих  ооцит  (клеток  так  называемого  cumulus  oophorus), клеток  Сертоли из  семенников  и клеток, выделенных  из  мозга. Ядра, выделенные  из  соматических  клеток, инъецировали  в энуклеированное яйцо  с помощью микропипетки. Яйцо  активировали  к развитию, поместив  в специальный раствор (так называемый  HEPES-CZB), свободный от  кальция, и добавляя  стронций  и цитохалазин.Стронций  активировал яйцо, а кальций подавлял  образование полярных  телец. Эмбрионов культивировали  до  стадии  2-8  клеток, морулы  или бластулы, а затем трансплантировали в матку приёмной  матери, где многие  из  них имплантировались  и некоторые из   них (15-16%)  продолжали  своё  развитие. Процент выхода  рождённых мышат (их  извлекали с помощью кесарева  сечения на  18, 5-19-й дни беременности)  был, однако, низок – в разных  сериях  экспериментов от  2  до  2,8%. Молекулярные  исследования  доказали  принадлежность ядер  рождённых мышат к клеткам донора  соматических  клеток.Таким образом, по  крайней мере  в некоторых случаях доказана  способность ядер  соматических  клеток  обеспечивать  нормальное  развитие  млекопитающих.

 Тем  не  менее,  работы  с  мышами, несмотря  на  их  непростую   судьбу, значительно  расширили   наши  представления  о  методологии   млекопитающих. 
 

Кролики  и  коровы. 

Американские  исследователи  Стик  и  Робл, используя  метод  Солтера  и  МакГрата, получили  шесть  живых  кроликов, пересадив  ядра  8-клеточных  эмбрионов  одной  породы  в  лишённые  ядра  яйцеклетки  кроликов  другой  породы. Фенотип  родившихся  полностью  соответствовал  фенотипу  донора.

Однако  только  6  из  164  реконструированных  яйцеклеток  (3,7%)  развились  в  нормальных  животных. Это, конечно, очень  низкий  выход, практически  не  позволяющий  рассчитывать  на  получение  таким   
 
 
 

способом  клона  генетически  идентичных  животных. Ценность  этой  работы, тем  не  менее,  в  том, что  она  показала  возможность  клонирования  эмбрионов  кроликов.

Работа  с  реконструированными  яйцеклетками  крупных  домашних  животных, коров  или  овец, идёт  несколько  по-другому. Их  сначала  культивируют  не  in  vitro, а in  vivo – в перевязанном  яйцеводе  овцы – промежуточного (первого) реципиента. Затем их  оттуда  вымывают  и трансплантируют в матку окончательного  (второго)  реципиента – коровы  или овцы  соответственно, где их  развитие  происходит  до  развитого детёныша. Уиландсин предложил заключить реконструированные  яйцеклетки  в агаровый  цилиндр, который он  потом трансплантировал  в перевязанный  яйцевод овцы  или коровы. По  данным  одних авторов реконструированные  зародыши  лучше развиваются в яйцеводе, чем в культивированной  среде, хотя  некоторые исследователи получили  неплохие  результаты  и при культивировании in  vitro.

Американцы  Робл  и  его  сотрудники  использовали  щадящий  метод  извлечения  ядра  без  прокалывания  мембраны  яйцеклетки, предложенные  МакГратом  и  Солтером, пересаживали  в  зиготы  так  называемые  кариопласты – мужской  и  женский  пронуклеусы  вместе  с  окружающей  их  цитоплазмой, а  также  ядра  2-, 4-  или  8-клеточных  эмбрионов  коровы. Сначала  пронуклеусы  центрифигурировали, чтобы  освободить  пронуклеусы  от  окружающих  их  гранул  желтка, после  чего  ядра  были  хорошо  видны  под  микроскопом, что  значительно  облегчало  их  удаление. При  помощи  манипулятора  и  заострённой  стеклянной  пипетки  извлекали  один  из  бластомеров  вместе  с  ядром  из  ранних  зародышей  и  переносили  его  в  энуклеированную  зиготы

Информация о работе Клонирование растение