Достижения генной инженерии

Автор: Пользователь скрыл имя, 17 Марта 2013 в 20:21, реферат

Краткое описание

Группа Кораны синтезировала ген аланиновой тРНК дрожжей, структура которого к тому времени была полностью расшифрована. Этот ген длиной 77 п. н. не содержал регуляторных последовательностей и поэтому не обладал функциональной активностью. Позднее та же группа авторов синтезировала первый функционально активный ген — ген супрессорной тирозиновой тРНК Е. coli длиной около 200 п. н.

Файлы: 1 файл

Достижения генной инженерии.doc

— 41.00 Кб (Скачать)

Достижения генной инженерии.

Группа Кораны синтезировала  ген аланиновой тРНК дрожжей, структура  которого к тому времени была полностью расшифрована. Этот ген длиной 77 п. н. не содержал регуляторных последовательностей и поэтому не обладал функциональной активностью. Позднее та же группа авторов синтезировала первый функционально активный ген — ген супрессорной тирозиновой тРНК Е. coli длиной около 200 п. н. 

Генная инженерия открыла путь для производства продуктов белковой природы путем введения в клетки микроорганизмов искусственно синтезированных кодирующих их генов, где они могут экспрессироваться в составе гибридных молекул. Первой удачной попыткой такого рода стала работа К. Итакуры и Г. Бойера с соавторами (1977) по экспрессии в Е. coil химически синтезированного гена, кодирующего гормон млекопитающих — соматостатин. Ген соматостатина был получен на основе сведений о первичном строении этого пептидного гормона, состоящего всего из 14 аминокислот. Использованный в этой работе подход оказался весьма перспективным для получения и многих других пептидных гормонов.

В различных лабораториях в СССР и за рубежом были созданы штаммы Е. coli, синтезирующие в составе гибридных белков гормон роста человека (соматотропин), пептидные гормоны — брадикинин и ангиотензин, нейропептид лей-энкефалин и др.

Ген гормона роста человека длиной 584 п. н.— наиболее длинный из искусственно синтезированных в настоящее  время. Он был встроен в плазмиду, реплицирующуюся в Е. coli под контролем промотора триптофанового оперона. Трансформированные полученной химерной плазмидой клетки Е. coli продуцировали при индукции промотора около 3 млн. молекул гормона роста человека в расчете на клетку. Этот полипептид, как было установлено в экспериментах на крысах с удаленным гипофизом, по функциям оказался полностью идентичен гормону роста человека.

В 1976 г. Гилберт и Максам в Гарвардском  университете, а также Сэнгер разработали  быстрый метод химического анализа  ДНК; появилась реальная возможность  определять последовательность до 1000 нуклеотидов в неделю силами одного исследователя. В 1982—1985гг. стало возможно создать прибор для автоматического анализа нуклеиновых кислот (а значит, генов). Анализ ДНК позволяет дедуцировать, основываясь на генетическом коде, аминокислотные последовательности белков, синтез которых находится под контролем соответствующих генов. С помощью созданного в результате совершенствования   анализа   белков   микроанализатора   Худа— Ханкепиллера (Калифорнийский технологический институт, 1980) за день удается определять последовательность из 100—200 аминокислот, причем для этого требуется всего 10 нг белка (1 нг=10 -9 г)2 [2].

Еще один важнейший этап—это синтез биополимеров по установленной структуре. Первые коммерческие приборы, производящие автоматизированный синтез полипептидов, были разработаны на основе исследований Меррифилда в 1963 г. Они используются в исследовательских лабораториях и в фармацевтической промышленности.

Метод химического синтеза генов  обеспечил также возможность  получения штаммов бактерий продуцентов инсулина человека, важного лечебного препарата для больных диабетом. «Ген инсулина синтезировали в вида более 40 в основном шестичленных олигонуклеотидов, которые затем объединяли в единую структуру с помощью ДНК-лигаэы. Полученные двух цепочечные полинуклеотиды длиной 271 и 286 пар оснований были встроены в плазмидные векторы. Туда же были встроены и регуляторные участки ДНК, обеспечивающие экспрессию гибридных молекул. Клонированные гены кодировали синтез проинсулина, который путем несложной химической обработки можно превратить в активный инсулин, включающий две полипептидные цепи А и В из 21 и 30 аминокислотных остатков, соединенных между собой сульфгидрильными связями» [4].

Таким способом получены и клонированы  гены, кодирующие глобины человека, животных и птиц, белок хрусталика глаза быка, яичный белок, фиброин шелка, продуцируемый тутовым шелкопрядом, и др. Этот же принцип был применен для получения, клонирования и экспрессии генов интерферона человека в бактериях. Интерферон — ценный лекарственный препарат, широко используемый для борьбы с вирусными инфекциями и лечения ряда других заболеваний, включая злокачественные опухоли. Интерферон вырабатывается в клетках животных и человека, но обладает выраженной видоспецифичностью. Ю. А. Овчинников и В. Г. Дебабов с сотрудниками получили микроорганизмы, эффективно синтезирующие интерфероны человека. Этим исследователям удалось сконструировать рекомбинантные плазмиды, обуславливающие синтез интерферона человека в Е. coli (рис. 16.2). Очищенный из клеток бактерий интерферон по своим физико-химическим и биологическим свойствам оказался близок интерферону, находящемуся в крови доноров. За счет введения в векторную плазмиду сигнальных последовательностей, инициирующих синтез иРНК и белка, удалось получить бактерии, способные синтезировать до 5 мг интерферона а расчете на 1 л суспензии бактерий. Это в 5000 раз больше, чем содержится в 1 л крови доноров. Замена Е. coli на микробы некоторых других видов позволяет еще больше увеличить производительность такой «фабрики интерферона».

В 1980 г. Итакура создал первый синтезатор генов. Вскоре после этого компания «Био-Лоджикалс» (Торонто) выпустила  прибор, сконструированный Огилви в Университете МакГилла в Монреале; прибор был способен в течение 6 ч синтезировать 12-членный олигонуклеотид с заданной последовательностью. В 1981 г. Худ, изобретатель белкового микроанализатора, создал другой автомат, выпускаемый фирмой «Генетик инстраментс».

Компания «Био-Лоджикалс» намеревалась до конца 1982 г. выпустить две модели синтезаторов олигонуклеотидов—одну полуавтоматическую, а вторую в комплексе с компьютером. В 1982 г. цена этих приборов на американском рынке составляла 36000—39500 долл.[2].  

 

К открытиям связанным с  достижениями генной инженерии нужно прибавить то, что огромный генетический «чертеж» многоклеточного существа просчитан полностью. Я думаю это можно назвать достижением века. 

После восьми лет работы многих исследовательских групп удалось точно определить 97 миллионов пар нуклеотидов и их местонахождение в спирали ДНК, хранящей полную наследственную информацию микроскопического червячка Сaenorhabditis elegans длиной около миллиметра Хотя это очень маленький червь, скорее червячок, с него без всякого преувеличения начинается новая эра в биологии. Геном этой нематоды состоит из 97 миллионов пар нуклеотидов ДНК, округленно 0,1 миллиарда пар. Геном человека, согласно большинству оценок, - 3 миллиарда нуклеотидных пар. Разница в 30 раз. Однако именно эта работа, о которой идет речь, окончательно убедила даже самых закоренелых скептиков, что расшифровка строения всего генома человека не только возможна, но и достижима в ближайшие годы. 

В лабораториях мира полным ходом идет расшифровка генома человека. Эта международная программа была начата в 1989 году, тогда же благодаря инициативе и энергии выдающегося биолога, ныне покойного академика А. А. Баева, к программе подключилась и Россия. В феврале этого года в Черноголовке под Москвой прошла конференция "Геном человека-99", посвященная десятилетию начала этих работ и памяти их инициатора, руководившего российской частью программы первые пять лет. Сейчас в разных странах мира, в лабораториях, разделивших между собой "фронт работ" (всего надо прочитать около трех миллиардов пар нуклеотидов), ежедневно расшифровывается более миллиона нуклеотидных пар, причем темп работ все ускоряется.[6]

Расшифровка, или, как говорят биологи, секвенирование, генома C. elegans была осуществлена по совместному проекту двумя исследовательскими группами: из Центра геномного секвенирования Вашингтонского университета (США) и Сенгеровского центра (Кембридж, Англия). В журнале "Science" от 11 декабря 1998 года опубликована серия статей, подробно рассказывающая об этой поистине грандиозной работе.

Естественно, расшифровать геном таких  гигантских размеров, как у названной  нематоды (напомню: 97 миллионов пар  нуклеотидов ДНК), невозможно без  огромной подготовительной работы. Ее в основном завершили к 1989 году. Прежде всего была построена физическая карта всего генома нематоды. Физическая карта представляет собой небольшие участки ДНК известной структуры (маркеры), расположенные на определенных расстояниях один от другого.

И вот с 1990 года началось само секвенирование. Его темп составлял в 1992 году 1 миллион пар нуклеотидов в год. Если бы такой темп сохранился, на расшифровку всего генома понадобилось бы почти 100 лет! Ускорить работы удалось простейшим способом - число исследователей в каждом центре возросло примерно до 100. По мере того, как раскрывалась нуклеотидная последовательность ДНК

C. elegans, пришлось расстаться с  двумя заблуждениями. Во-первых, оказалось, что генов у нее  не 15 тысяч, как предполагали вначале,  а 19099. Во-вторых, надежда на то, что гены сосредоточены в середине хромосом, а к концам сильно редеют, оправдалась лишь отчасти, гены распределены вдоль хромосом относительно равномерно, хотя в центральной части их все-таки больше.

Если у дрожжей функция половины генов в геноме неизвестна (так называемые молчащие гены), то у червя эта доля еще больше: из 19 тысяч генов 12 тысяч остаются пока загадочными.

Значение секвенирования генома нематоды, конечно, выходит далеко за рамки  того, что можно назвать полигоном  для расшифровки генома человека. C. elegans - первый многоклеточный организм, геном которого раскрыт практически полностью. Можно напомнить: два года назад был расшифрован первый геном эукариотического организма - дрожжей, то есть организма, клетки которого содержат оформленные ядра. (К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие. Дрожжи, согласно биологической систематике, относятся к одноклеточным грибам.) Иначе говоря, за два года был пройден путь от генома одноклеточного до генома многоклеточного организма.

Программа "Геном человека", как  уже говорилось, - программа общечеловеческая. Каждая лаборатория, в какой бы стране она ни находилась, вносит в нее  посильный вклад. И как только кому-то удается раскрыть структуру нового гена, эта информация немедленно поступает в Международный банк данных, доступный каждому исследователю. В России по этой программе работают около 100 исследовательских групп.[6]


Информация о работе Достижения генной инженерии