Автор: Пользователь скрыл имя, 05 Ноября 2012 в 17:02, реферат
Белки — это биополимеры, мономерами которых являются аминокислоты.
Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-СООН) и аминную (-NH2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь — какой-либо радикал, придающий каждой аминокислоте определенные свойства.
Что такое белки, особенности структурной организации белковых молекул и их функции
Белки — это биополимеры, мономерами которых являются аминокислоты.
Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-СООН) и аминную (-NH2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь — какой-либо радикал, придающий каждой аминокислоте определенные свойства.
У большей части аминокислот имеется одна карбоксильная группа и одна аминогруппа; эти аминокислоты называются нейтральными. Существуют, однако, и основные аминокислоты — с более чем одной аминогруппой, а также кислые аминокислоты — с более чем одной карбоксильной группой.
Известно около 200 аминокислот,
встречающихся в живых
В зависимости от радикала основные аминокислоты делят на 3 группы:
Неполярные (аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин);
Полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);
Заряженные (аргинин, гистидин, лизин — положительно; аспарагиновая и глутаминовая кислота — отрицательно).
Боковые цепи аминокислот (радикал) могут быть гидрофобными и гидрофильными и придают белкам соответствующие свойства.
У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд протеиногенных аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми. К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин; аргинин и гистидин — незаменимые для детей.
В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е. они являются амфотерными соединениями. Карбоксильная группа (—СООН) способна отдавать протон, функционируя как кислота, а аминная (—NH2) принимать протон, проявляя таким образом свойства основания.
Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты. Образующаяся при этом молекула представляет собой дипептид, а связь —СО—NH— называется пептидной связью.
На одном конце молекулы дипептида находится свободная аминогруппа, а на другом — свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себя другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много аминокислот (более 10), то образуется полипептид.
Пептиды играют важную роль в организме. Многие алигопептиды являются гормонами. Таковы окситоцин, вазопрессин, тиролиберин, тиреотропин и др. К олигопептидам относится также брадикидин (пептид боли) и некоторые опиаты («естественные наркотики» человека), выполняющие функцию обезболивания. Принятие наркотиков разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает 1 сильную боль — «ломку», которая в норме снимается опиатами.
К олигопептидам относятся некоторые антибиотики (например, грамицидин S).
Многие гормоны (инсулин, адренокортикотропный гормон и др.), антибиотики (например, грамицидин А), токсины (например, дифтерийный токсин) являются полипептидами.
Белки представляют собой полипептиды, в молекулу которых входит от 50 до нескольких тысяч аминокислот с молекулярной массой свыше 10 000.
Каждому белку свойственна в определенной среде своя особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков.
Первичная структура — последовательность аминокислот в полипептид ной цепи. Первичная структура специфична для каждого белка и определяется генетической информацией, т.е. зависит от последовательности нуклеотидов в участке молекулы ДНК, кодирующем данный белок. От первичной структуры зависят все свойства и функции белков. Замена одной единственной аминокислоты в составе молекул белка или изменение их расположения обычно влечет за собой изменение функции белка. Так как в состав белков входит 20 видов аминокислот, число вариантов их комбинаций в пол и пептидной цепи поистине безгранично, что обеспечивает огромное количество видов белков в живых клетках.
В живых клетках молекулы белков или отдельные их участки представляют собой не вытянутую цепь, а скручены в спираль, напоминающую растянутую пружину (это так называемая α-спираль) или сложены в складчатый слой (β-слой).Вторичная структура возникает в результате образования водородных связей между -СО- и -NН2-группами двух пептидных связей внутри одной полипептидной цепи (спиральная конфигурация) или между двумя полипептидными цепями (складчатые слои).
Полностью α-спиральную конфигурацию имеет белок кератин. Это структурный белок волос, шерсти, ногтей, когтей, клюва, перьев и рогов. Спиральная вторичная структура характерна, помимо кератина, для таких фибриллярных (нитевидных) белков, как миозин, фибриноген, коллаген.
У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы — глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Третичная структура стабилизируется ионными, водородными связями, ковалентными дисульфидными связями (которые образуются между атомами серы, входящими в состав цистеина), а также гидрофобными взаимодействиями. Наиболее важными в возникновении третичной структуры являются гидрофобные взаимодействия; белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, т. е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.
Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, удерживаемых в молекуле вместе за счет гидрофобных взаимодействий, а также при помощи водородных и ионных связей — возникает четвертичная структура. Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части — гема. Только в такой структуру гемоглобин способен выполнять свою транспортную функцию.
Под влиянием различных химических
и физических факторов (обработка
спиртом, ацетоном, кислотами, щелочами,
высокой температурой, облучением,
высоким давлением и т. д.) происходит
изменение третичной и
По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложным — содержащие белковую часть и небелковую (простатическую) — ионы металлов, углеводы, липиды и др. Простыми белками являются сывороточный альбумин крови, иммуноглобулин (антитела), фибрин, некоторые ферменты (трипсин) и др. Сложными белками являются все протеолипиды и гликопротеиды, гемоглобин, большинство ферментов и т.д.
Функции белков
Структурная.
Белки входят в состав клеточных мембран и органелл клетки. Стенки кровеносных сосудов, хрящи, сухожилия, волосы, ногти, когти у высших животных состоят преимущественно из белков.
Каталитическая (ферментативная).
Белки-ферменты катализируют
протекание всех химических реакций
в организме. Они обеспечивают расщепление
питательных веществ в
Транспортная.
Белки способны присоединять и переносить различные вещества. Альбумины крови транспортируют жирные кислоты, глобулины — ионы металлов и гормоны. Гемоглобин переносит кислород и углекислый газ.
Молекулы белков, входящие в состав плазматической мембраны, принимают участие в транспорте веществ в клетку и из нее.
Защитная.
Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.
Сократительная.
Обеспечивается движением относительно друг друга нитей белков актина и миозина в мышцах и внутри клеток. Скольжение микротрубочек, построенных из белка тубулина, объясняется движение ресничек и жгутиков.
Регуляторная.
Многие гормоны являются олигопептидами или белками, например: инсулин, глюкагон, аденокортикотропный гормон и др.
Рецепторная.
Некоторые белки, встроенные в клеточную мембрану, способны изменить свою структуру на действие внешней среды. Так происходят прием сигналов из внешней среды и передача информации в клетку. Примером может служить фитохром — светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин — составная часть родопсина, пигмента, находящегося в клетках сетчатки глаза.
Строение, свойства и функции липидов
Липиды - жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Дикими принадлежат к простейшим биологическим молекулам.
В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре жиры называют триацилглицеролами.
Когда жиры гидролизуются (т.е. расщепляются из-за внедрения H+ и OH- в эфирные связи), они распадаются на глицерол и свободные высшие карбоновые кислоты, каждая из которых содержит четное число атомов углерода.
Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Среди предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят:
пальмитиновая СН3 - (СН2)14 - СООН или С15Н31СООН;
стеариновая СН3 - (СН2)16 - СООН или С17Н35СООН;
арахиновая СН3 - (СН2)18 - СООН или С19Н39СООН;
среди непредельных:
олеиновая СН3 - (СН2)7 - СН = СН — (СН2)7 - СООН или С17Н33СООН;
линолевая СН3 - (СН2)4 - СН = СН — СН2 - СН — (СН2)7 - СООН или С17Н31СООН;
линоленовая СН3 - СН2 - СН = СН — СН2 - СН = СН — СН2 - СН = СН — (СН2)7 - СООН или С17Н29СООН.
Степень ненасыщенности и длина цепей высших карбоновых кислот (т.е. число атомов углерода) определяет физические свойства того или иного жира.
Жиры с короткими и
непредельными кислотными цепями имеют
низкую температуру плавления. При
комнатной температуре это
Различают:
Фосфолипиды — амфифильные соединения, т. е. имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны (растворимы в воде), а неполярные хвостовые группы гидрофобны (нерастворимы в воде).
Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.
Воска — сложные эфиры адноатомных (с одной гидроксильной группой) высокомолекулярных (имеющих длинный углеродный скелет) спиртов и высших карбоновых кислот.
Еще одну группу липидов составляют стероиды. Эти вещества построены на основе спирта холестерола. Стероиды очень плохо растворимы в воде и не содержат высших карбоновых кислот.
К ним относятся желчные кислоты, холестерол, половые гормоны, витамин D и др.
К стероидам близки терпены (
Липиды могут образовывать
комплексы с другими
Липопротеины — сложные образования, содержащие триацилглицеролы, холестерол и белки, причем последние не имеют ковалентных связей с липидами.
Гликолипиды — это группа липидов, построенных на основе спирта сфингозина и содержащих кроме остатка высших карбоновых кислот одну или несколько молекул сахаров (чаще всего глюкозу или галактозу).