Автор: Пользователь скрыл имя, 15 Апреля 2012 в 09:12, курсовая работа
Наиболее широко распространенные в мире методы очистки питьевой воды и отработанных водных растворов основаны на моделировании природных процессов - фильтрации, сорбции, ионного обмена. Однако, установки в которых реализованы указанные процессы, нуждаются в регенерации и периодической замене основного рабочего элемента: фильтров, сорбентов, ионообменных смол.
При этом возникают проблемы с утилизацией отработанных материалов, а также сохраняется необходимость восполнения их потерь путем производства из невозобновляемых сырьевых запасов новых материалов взамен отработанных. Очевидно, стратегия наименьшего экологического ущерба при сохранении достигнутого уровня жизни населения Земли или при его улучшении, должна быть основана на использовании технологий, позволяющих обеспечить минимально возможное вовлечение в производственно-хозяйственную деятельность человека природных минеральных сырьевых ресурсов, которые в естественном состоянии (месторождения полезных ископаемых) не представляют угрозы окружающей среде, но после серии различных технологических преобразований рассеиваются в виде растворимых в воде соединений. Одним из естественных процессов, имеющих самое широкое распространение в живой и неживой природе является электрохимическое преобразование веществ, т.е. окислительно-восстановительные реакции, связанные с удалением или присоединением электрона. Этот природный процесс более эффективен в сравнении с вышеназванными. Теоретические расчеты показывают, что потенциальные возможности электрохимического кондиционирования воды (очистки, умягчения, опреснения, обеззараживания и т.д.) более чем в 100 раз превосходят фильтрационные, сорбционные и ионообменные методы по экономичности, скорости и качеству. Кроме того, электрохимические реакции позволяют без дополнительных затрат химических реагентов преобразовать пресную или слабосолоноватую природную воду в высокоактивный технологический раствор, обладающий практически любыми необходимыми функциональными свойствами.
Преимущества электрохимических методов очистки
Электрохимические методы очистки сточных вод
Анодное окисление и катодное восстановление.
Электрокоагуляция.
Электрофлотация.
Электродиализ.
Электрохимическая активация
Электрохимические принципы работы активаторов
Электрохимические установки для очистки питьевой воды на примере бытового фильтра "ИЗУМРУД"
Технологический процесс очистки воды "ИЗУМРУД"
Источники:
Даже в тех случаях, когда выход из адсорбционной или мембранной системы водоочистной защищен противомикробным фильтром, бактерии могут размножаться на выходной поверхности противомикробного фильтра и на внутренних поверхностях выходных магистралей, что является фактором эпидемиологического риска. Поэтому адсорбционные, ионообменные, мембранные и комбинированные бытовые водоочистительные системы непригодны для работы с водой, небезопасной в микробиологическом отношении.
Установки "Изумруд" свободны от указанного недостатка, поскольку даже при сверхвысоком содержании в исходной воде бактериальных и вирусных тел 106 - 108 в одном миллилитре (мл) после очистки в установках "Изумруд" количество микроорганизмов в воде уменьшается до 10 - 102 на мл (на пять-шесть порядков). Соответствующие данные получены при проведении анализов в лабораториях Беркширской и Оклендской микробиологических служб (Великобритания). Кроме того, в момент электрохимической обработки вода приобретает бактериостатические характеристики, аналогичные свойствам родниковых вод. Вследствие этого выходные магистрали электрохимических водоочистителей не подвергаются инфицированию. В процессе длительного хранения вода, очищенная в установках "Изумруд", может утратить бактериостатические свойства.
Бактерицидные вещества, образующиеся в анодной камере электрохимического реактора, обладают очень высокими антимикробными свойствами, намного превосходящими по эффективности обычные антисептики (хлорамин и др.). Эти вещества, присутствующие в воде в пропорции 1 : 1000, обеззараживают ее даже в случае интенсивного микробного обсеменения. При этом погибают не только возбудители типичных желудочно-кишечных инфекций (возбудители дизентерии, сальмонеллеза, холерный вибрин), но и экзотические патогенные микроорганизмы тропических стран. Этот факт подтвержден наблюдениями сотрудников Британской компании Enigma во время Руандийского кризиса, а также данными по обеззараживанию воды плавательных бассейнов в Москве и в г. Лас-Вегас, Невада, США. В последнем случае успешно подавлялся рост "черных водорослей" (Black Algae).
Адсорбционные устройства для доочистки питьевой воды (чаще угольные) имеют ограниченную сорбционную емкость , которая заполняется со скоростью , зависящей от уровня загрязнений в исходной воде: чем сильнее загрязнена вода , тем быстрее исчерпываются функциональные возможности сорбента.
Мембранные фильтры тонкой очистки согласно рекламным данным задерживают 90-95 % всех находящихся в воде элементов и соединений, в том числе необходимые для человека и животных микро- и ультрамикроэлементы (кальций, магний, калий, натрий, литий, серебро, фтор, йод и другие). Как известно дистиллированная вода минерализацией менее 0,01 г/л заведомо непригодна для питья. Регулярное употребление деминерализованной воды с содержанием солей менее 0,1 г/л обуславливает физиологический дефицит полезных микро- и ультрамикроэлементов, что отрицательно сказывается на состоянии здоровья населения некоторых регионов с низкоминерализованной водой и у полярников, пьющих снеговую воду. В соответствии с ГОСТ 2874-82 минерализация питьевой воды не должна превышать 1,0 г/л. Во многих городах России минерализация питьевой воды 0,2 - 0,5 г/л, после очистки ее методом обратного осмоса или ультрафильтрации потребитель получит воду с концентрацией солей 0,01 - 0,05 г/л. Следовательно существующие системы мембранных водоочистителей, которые пропускают "только воду", создают риск патологии, связанной с потреблением чрезмерно обессоленной воды.
Дефицит микро- и ультрамикроэлементов в организме может быть скорректирован специальной диетой. Однако некоторые микро- и ультрамикроэлементы воды практически незаменимы.
При работе с водой минерализацией 0,1 - 0,5 г/л через электрохимический реактор установки "Изумруд" проходит ток силой 0,3 - 0,4 А. В этом случае общая минерализация обработанной воды почти не меняется, ионы тяжелых металлов переходят в форму нетоксичных и труднорастворимых гидроксидов и гидроксидоксидов, микробы, находящиеся в воде, разрушаются, органические вещества, а также неорганические токсические соединения (в том числе нитраты и нитриты) подвергаются анодной окислительной деструкции. Сильные неорганические окислители (в том числе хлор) и сверхактивные радикальные частицы инактивируются в реакционно-вихревой и каталитической камерах. Эффективность удаления активного хлора и хлор содержащих окислителей в установках "Изумруд" не менее 90 %.
Высокий ОВП и ряд других физико-химических условий в анодной камере электрохимического реактора исключают образование токсических хлорорганических веществ и обеспечивают полную окислительную деструкцию диоксинов, если они содержатся в водопроводной воде. Физиологически полезные микро- и ультрамикроэлементы (кальций, калий, магний, литий, фтор и другие) не образуют под влиянием электрохимической обработки нерастворимых соединений и остаются в составе питьевой воды. По данным лаборатории фирмы Oaklend Calvert Consaltants, Ltd (Engl.) при содержании в исходной воде ионов серебра 68 мкг/л в очищенной воде содержание ионов серебра составило 56 мкг/л, то есть потерь серебра не было. В то же время токсичные ионы металлов (меди, железа, олова, алюминия, ртути, цинка, хрома удалялись на 85-99,9%.
Присутствующие в воде радионуклиды также превращаются в формы нерастворимых соединений, которые частично оседают на катоде и удаляются при промывании установки. Если эти соединения попадают с водой в желудочно-кишечный тракт, то они не всасываются в кровь и удаляются из кишечника естественным путем.
Естественное свойство полезных для организма микро- и ультрамикроэлементов состоит в том, что в результате окислительно-восстановительных реакций они не участвуют в образовании труднорастворимых или нерастворимых комплексов. Это увеличивает вероятность участия этих элементов в биохимических реакциях и делает их совместимыми с организмом. По этой же причине полезные элементы не образуют нерастворимых комплексов при электрохимической обработке и сохраняются в очищенной воде в ионизированной форме. В то же время элементы легко вступают в химические комплексы, в том числе с белковыми соединениями. Как правило они денатурируют белок и поэтому токсичны. Однако по причине склонности вступать в комплексы токсичные элементы при электрохимической обработке переходят в нерастворимые и безопасные для организма формы.
Гидроксиды и гидроксидоксиды тяжелых металлов могут растворятся в крепких кислотах, в том числе в соляной кислоте. Соляная кислота в норме присутствует в желудочном соке. Но желудочный сок сам по себе или в присутствии перевариваемой пищевой массы представляет собой сложную органическую среду, содержащую белки и полисахариды. Эти соединения играют роль внутренних адсорбентов (энтеросорбентов), которые легко связывают молекулы гидроксидов и гидроксидоксидов. В таком виде гидроксиды и гидроксидоксиды тяжелых металлов защищены от действия соляной кислоты. Поэтому они не растворяются в желудке, а затем выводятся из организма естественным путем. Аналогичным образом наши внутренние сорбенты связывают хлопья солей жесткости, оксидов железа. Эти компоненты практически безвредны для организма. Однако их присутствие в питьевой воде меняет ее вкус и нежелательно по эстетическим соображениям.
Избавиться от хлопьев солей жесткости или ржавчины можно только с помощью фильтрации. Электрохимическая обработка в этом случае малоэффективна. При работе с водой, содержащей хлопьевидные взвеси, фильтры тонкой очистки воды быстро забиваются и выходят из строя.
Водоочистители "Изумруд" хорошо удаляют из воды фенол и тетрахлорэтилен (на 90 - 99,9% в зависимости от исходной концентрации). Суммарное количество органических соединений в воде после электрохимической очистки уменьшается на 1/3. В загрязненной питьевой воде большую опасность представляют гидрофобные токсины. В результате анодного окисления эти токсины переходят в относительно безвредные гидрофильные формы, которые легко удаляются из организма с физиологическими выделениями.
Таким образом, электрохимическая очистка воды в установках "Изумруд" при правильной эксплуатации обеспечивает:
обеззараживание воды;
эффективное удаление или инактивацию токсических элементов и соединений;
удаление избыточных концентраций солей и компонент твердого осадка;
направленное изменение ОВП и активацию воды при сохранении нейтральных кислотно-щелочных характеристик ;
сохранение нормального количества биологически полезных микро- и ультрамикроэлементов.
Очистка воды в установках "Изумруд" основана на использовании процессов окисления и восстановления, благодаря которым разрушаются и нейтрализуются все токсические вещества в природе. В установках "Изумруд" природные процессы естественной окислительно-восстановительной деструкции и нейтрализации токсических веществ ускоряются многократно за счет прямых электрохимических реакций, а также благодаря участию в процессах очистки электрохимически синтезированных из самой очищаемой воды и растворенных в ней солей высокоактивных реагентов: озона, атомарного кислорода, пероксидных соединений, диоксида хлора, короткоживущих свободных радикалов. Это обеспечивает высокую эффективность и экологическую безопасность процесса очистки воды в сравнении с другими известными методами.
В корпусе установки "Изумруд-М" размещены: диафрагменный электрохимический реактор РПЭ-1, каталитический реактор, вихревая реакционная камера, источник питания и система автоматического включения и отключения установки с инфракрасным датчиком протока. Реактор РПЭ-1, основной частью которого является проточный электролитический модульный элемент ПЭМ, является миниатюрным экономичным высокопроизводительным электрохимическим устройством, работающим в проточном режиме. Гарантийный ресурс непрерывной работы реактора РПЭ-1 в установке составляет 30000 часов. Реактор РПЭ-1 является основной частью установки и запатентован в России, Великобритании, США, Германии и Японии. Анод элемента ПЭМ в реакторе установки изготовлен из титана со специальным покрытием, в состав которого входят иридий, платина, рутений. Титановый катод имеет повышенную каталитическую активность за счет специальной обработки поверхности. Ультрафильтрационная керамическая диафрагма из оксидов циркония, иттрия и алюминия находится между анодом и катодом элемента ПЭМ и не допускает смешивания воды в анодной и катодной камерах.
В то же время диафрагма обеспечивает беспрепятственную миграцию ионов в электрическом поле между анодом и катодом. Каждый микрообъем воды, протекающей в камерах реактора РПЭ-1, соприкасается с поверхностью электрода и подвергается интенсивному воздействию электрического поля в двойном электрическом слое (ДЭС), образованном зарядами на электроде и противоионами в воде. Это гарантирует высокое качество очистки воды. Кроме того, под влиянием электрического поля ДЭС структурная сетка водородных связей разрыхляется, молекулы воды обретают дополнительные степени свободы, что облегчает усвоение такой активированной в электрическом поле воды клетками живых организмов и ускоряет удаление биологических шлаков. Аналогом процесса структурной модификации воды в электрическом поле ДЭС являются фазовые переходы при таянии льда (талая вода), структурные превращения воды в электрических разрядах грозовых ливней, или физико-химические воздействия, которым подвергается вода на большой глубине в горных породах при высокой температуре в начальной стадии формирования целебных минеральных источников. Однако, обработка воды в электрическом поле ДЭС отличается намного большей глубиной преобразования ее структуры и ярко выраженной направленностью воздействия: электронодонорного у катода и электронакцепторного у анода.
Вся гидравлическая система установки изготовлена из химически весьма стойких материалов, разрешенных к применению в изделиях медицинской техники.
В установке используются следующие процессы очистки воды:
электролитическое и электрокаталитическое анодное окисление в сочетании с электромиграционным переносом (реактор РПЭ N 1);
гомогенные реакции окисления с помощью катализаторов - переносчиков электронов (вихревая реакционная камера Е);
гетерогенные окислительно-восстановительные реакции с участием катализаторов - переносчиков электронов (каталитический реактор К);
электролитическое и электрокаталитическое катодное восстановление в сочетании с электромиграционным переносом (реактор РПЭ N 2).
Все указанные процессы в установке разделены в пространстве и во времени, что обеспечивает наилучшие результаты очистки.
В Центре Микробиологических Исследований Беркшаэ устройство было апробировано искусственно загрязненной водой при обычном режиме протока 40-60 литров в час. На протяжении всего времени исследования, т.е. 10 куб. м. воды, эффективность очистки оставалась постоянной.
Загрязнитель | Концентрация на входе | Концентрация на выходе |
Алюминий | 2000 | 135 |
Медь | 30000 | 131 |
Ртуть | 500 | 2 |
Свинец | 500 | 23 |
Хром | 10000 | 9 |
Серебро | 100 | 3 |
Цинк | 30000 | 212 |
Фенол | 0.01 | 0.0003 |
Тетрахлорэтилен | 0.065 | 0.001 |
Сальмонелла | 4.000.000 | 191 |
Pseudomonas spp. | 3.800.000 | 94 |
Полиомиелит | 700.000.000 | 925 |
Legionella pneumophila | 8.000.000 | 6 |
Кишечная палочка | 60.000.000 | 781 |
Информация о работе Использование электрохимических методов для очистки сточных вод и водоподготовки