Автор: Пользователь скрыл имя, 13 Мая 2012 в 19:54, контрольная работа
Объем строительства зданий различного назначения из монолитного железобетона в последние годы значительно возрос. В то же время практика проектирования не имеет в своем распоряжении документа, где были бы объединены основные требования, выполнение которых обеспечивает надежность и безопасность такого вида зданий. Настоящий Свод правил ставит своей целью восполнить этот пробел.
Введение
1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Общие указания
5 Конструктивные решения железобетонных монолитных зданий
6 Расчет несущих конструктивных систем
6.1 Расчетная схема
6.2 Требования к расчету
6.3 Методы расчета
7 Несущие железобетонные конструкции
8 Расчет несущих железобетонных конструкций
9 Конструирование основных несущих железобетонных конструкций монолитных зданий
Приложение А Основные буквенные обозначения
Приложение Б Перечень нормативной и технической документации
6.2.7 В результате расчета несущей конструктивной системы должны быть установлены значения вертикальных перемещений (прогибов) перекрытий и покрытий, горизонтальные перемещения конструктивной системы, а также для зданий повышенной этажности - ускорения колебаний перекрытий верхних этажей. Величины указанных перемещений и ускорения колебаний не должны превышать допустимых значений, установленных соответствующими нормативными документами.
Определение горизонтальных перемещений конструктивной системы следует производить от действия расчетных (для предельных состояний второй группы*) постоянных, длительных и кратковременных горизонтальных и вертикальных нагрузок. При этом на первой стадии расчета рекомендуется принимать пониженные значения жесткостей элементов конструктивной системы, поскольку горизонтальные перемещения напрямую зависят от жесткостных свойств элементов.
_______________________
* Далее по
тексту расчетные значения
Определение вертикальных
перемещений (прогибов) перекрытий и
покрытий производят от действия нормативных
постоянных и длительных вертикальных
нагрузок. При этом на первой стадии
расчета рекомендуется
В первом приближении значения понижающих коэффициентов относительно начального модуля упругости бетона с учетом длительности действия нагрузки рекомендуется принимать: для вертикальных несущих элементов - 0,6, а для плит перекрытий (покрытий) - 0,2 при наличии трещин или 0,3 - при отсутствии трещин.
На последующих стадиях расчета при известном армировании следует принимать уточненные жесткости плит с учетом армирования, наличия трещин и неупругих деформаций в бетоне и арматуре, определяемые согласно действующим нормативным документам.
Ускорения колебаний перекрытий верхних этажей здания следует определять при действии пульсационной составляющей ветровой нагрузки.
6.2.8 При расчете на устойчивость конструктивной системы следует производить проверку устойчивости формы конструктивной системы, а также устойчивости положения конструктивной системы на опрокидывание и на сдвиг.
Расчет на устойчивость конструктивной системы следует производить на действие расчетных постоянных, длительных и кратковременных вертикальных и горизонтальных нагрузок.
При расчете
устойчивости формы конструктивной
системы рекомендуется
При расчете устойчивости положения конструктивные системы следует рассматривать как жесткое недеформированное тело. При расчете на опрокидывание удерживающий момент от вертикальной нагрузки должен превышать опрокидывающий момент от горизонтальной нагрузки с коэффициентом 1,5. При расчете на сдвиг удерживающая горизонтальная сила должна превышать действующую сдвигающую силу с коэффициентом 1,2. При этом следует учитывать наиболее неблагоприятные значения коэффициентов надежности по нагрузке.
6.2.9 Расчет на
прогрессирующее разрушение
Расчет на прогрессирующее разрушение следует производить при действии нормативных вертикальных нагрузок с нормативными значениями сопротивления бетона и арматуры, принимая линейные жесткости элементов конструктивной системы.
6.2.10 Оценку несущей
способности и деформации
6.2.11 Расчет перекосов
вертикальных ячеек от
6.3 Методы расчета
6.3.1 Пространственная
конструктивная система
Расчет регулярных (или близких к ним) колонных и стеновых КС можно производить методом заменяющих (эквивалентных) рам (рис. 6.1), а стеновых КС - путем разложения на поперечную и продольную схемы (рис. 6.2).
Для оценки максимальной несущей способности перекрытий может быть использован расчет методом предельного равновесия.
а - общая схема; 6 - поперечная схема; в - продольная схема;
1 , 4 и 2, 3 - две крайние и две средние поперечные рамы; 5, 7 и 6 - две крайние и средняя продольные рамы; l 1 , l 2 , l 3 - шаги поперечных рам; b 1 , b 2 - шаги продольных рам
Рисунок 6.1 - План типового этажа здания с регулярной колонной КС
а - общая схема; б - поперечная схема; в - продольная схема;
1 , 2 - наружные и внутренние поперечные стены; 3, 4 - наружные и внутренние продольные стены; 5 - участки примыкающих стен перпендикулярного направления
Рисунок 6.2 - К расчету стеновой конструктивной системы
6.3.2 Дискретизацию
конструктивных систем
При создании пространственной модели конструктивной системы необходимо учитывать характер совместной работы стержневых, оболочечных и объемных конечных элементов, связанный с различным количеством степеней свободы для каждого из указанных элементов.
6.3.3 Деформативные свойства основания следует учитывать путем использования общепринятых расчетных моделей основания, применения различных типов конечных элементов или краевых условий с заданной податливостью, моделирования всего массива грунта под зданием из объемных конечных элементов, либо комплексно - с использованием всех вышеперечисленных методов в случае сложной совместной работы конструкции фундамента и основания.
На первой стадии расчета конструктивной системы допускается деформативность основания учитывать с помощью коэффициента постели, принимаемого по усредненным характеристикам грунтов.
При использовании свайных или свайно-плитных фундаментов сваи следует моделировать как железобетонные конструкции или учитывать их совместную работу с грунтом обобщенно, как единое основание с использованием приведенного коэффициента постели основания.
6.3.4 При отсутствии данных о порядке и времени приложения постоянных и длительно действующих нагрузок допускается проверять прочность, трещиностойкость и деформации несущей КС с обязательным учетом деформативности основания при двух крайних случаях:
1) наиболее опасном поэтажном приложении нагрузки и изменении жесткостей в процессе монтажа;
2) одновременном приложении всей нагрузки на всех этажах.
6.3.5 При построении конечно-элементной расчетной модели размеры и конфигурацию конечных элементов следует задавать, исходя из возможностей применяемых конкретных расчетных программ, и принимать такими, чтобы была обеспечена необходимая точность определения усилий подлине колонн и по площади плит перекрытий, фундаментов и стен с учетом общего числа конечных элементов в расчетной схеме, влияющего на продолжительность расчета.
6.3.6 Жесткости
конечных элементов на
После определения арматуры в плитах перекрытий и покрытий следует произвести дополнительный расчет конструктивной системы для уточнения прогибов этих конструкций, принимая уточненные значения изгибных жесткостей конечных элементов плит с учетом армирования в двух направлениях согласно действующим нормативным документам.
Аналогичный дополнительный расчет следует выполнить для более точной оценки изгибающих моментов в элементах перекрытий, покрытий и фундаментных плитах, а также продольных сил в стенах и колоннах с учетом нелинейной работы арматуры и бетона вплоть до предельных значений.
6.3.7 Расчет конструктивных
систем методом конечных
6.3.8 Расчет регулярной
колонной конструктивной
Расчет выделенных в каждом направлении рам, состоящих из колонн и полос плоской плиты (условного ригеля), следует производить независимо друг от друга по общим правилам строительной механики на действие вертикальных и горизонтальных нагрузок, принимая при определении усилий линейные жесткости элементов рам.
Изгибающие моменты и поперечные силы в опорных и пролетных сечениях условного ригеля распределяют между его надколонными и межколонными полосами в зависимости от расположения колонн в раме (крайняя или промежуточная колонна) и соотношения между поперечными и продольными (вдоль оси рамы) пролетами.
Расчет конструктивных систем методом заменяющих рам следует производить по специальным рекомендациям, согласованным с НИИЖБ.
6.3.9 Расчет стеновой КС ( рис. 6.2, а) на горизонтальные нагрузки можно выполнять методом разделения перекрестной КС на независимые поперечную ( рис. 6.2, б) и продольную схемы ( рис. 6.2, в).
Горизонтальные нагрузки принимают действующими в обоих направлениях. При допущении абсолютной жесткости плит перекрытий в своей плоскости горизонтальные перемещения и углы наклона всех несущих стен будут одинаковыми при симметричных в плане схемах и нагрузках. Поэтому можно принять все стены одного направления, расположенные в одной плоскости, соединенными последовательно друг с другом в уровне перекрытий шарнирными связями, абсолютно жесткими вдоль своей оси. При несущих монолитных наружных стенах следует учитывать участки примыкающих стен перпендикулярного направления ( рис. 6.2, б, в).
6.3.10 Расчет несущей
способности перекрытий
6.3.11 На начальной
стадии расчета для
7 Несущие железобетонные конструкции
Информация о работе Железобетонные монолитные конструкции зданий