Шпаргалка по "Анатомии"

Автор: Пользователь скрыл имя, 15 Января 2012 в 11:23, шпаргалка

Краткое описание

Работа содержит ответы на 24 вопроса по дисциплине "Анатомия ".

Файлы: 1 файл

Анатомия. Экзамен..doc

— 408.00 Кб (Скачать)
  1. Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет;.
  2. Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование;
  3. Клетки всех организмов сходны по своему химическому составу, строению и функциям;
  4. Новые клетки образуются только в результате деления исходных клеток;
  5. Клетки многоклеточных организмов образуют ткани, ткани образуют органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток;
  6. Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток - дифференцировка.

Ретикулярная теория. 
В ретикулярной формации ствола мозга находится множество нейронов, аксоны которых идут почти ко всем областям головного мозга (кроме неокортекса). В конце 1940-х годах Моруцци и Мэгуном было обнаружено, что высокочастотное раздражение ретикулярной формации ствола мозга кошек приводит к их мгновенному пробуждению. Повреждение ретикулярной формации вызывает постоянный сон, перерзка же сенсорных трактов такого эффекта не дает.

Ретикулярную  формацию стали рассматривать как  область головного мозга, участвующую  в поддержании сна. Сон наступает, когда ее активность пассивно, либо под действием внешних факторов падает. Активация ретикулярной формации зависит от количества сенсорных импульсов, поступающих в нее, а так же от активности нисходящих волокон между передним мозгом и стволовыми структурами.

Однако  позднее было установлено, что: 
1. Во-первых: ретикулярная формация вызывает не только бодрствования, но и сон, что зависит от места наложения электродов при стимуляции ее электрическим раздражителем.

2. Во-вторых: нейронное состояние ретикулярной  формации в бодрствующем состоянии  и во время сна мало, чем  отличается.

3. В-третьих:  ретикулярная формация является не единственным центром бодрствования: они так же представлены и в медиальном таламусе, и в переднем гипоталамусе.

«Нейронная доктрина» – клеточная теория строения нервной системы сформулированная в 1891 году В. фон Вальдейером, благодаря работам ряда ученых того времени - М.Д. Шлейдена, Т. Шванна, К. Гольджи, С. Рамон-и-Кахаля, В. Гиса, А.-Г. Фореля, В. фон Вальдейера.  

Краткие постулаты нейронной доктрины:

  • Нейрон является дискретной структурной единицей нервной ткани.
  • Нейрон является функциональной единицей нервной ткани.
  • Между нейронами существуют специализированные контакты (С. Рамон-и-Кахаль), а не анастомозы (ретикулярная гипотеза К. Гольджи).
  • Нейрон имеет несколько протоплазматических выростов (дендриты) и одно волокно, или осевой цилиндр (аксон), который на конце разветвляется на коллатерали.
  • Коллатерали аксона контактируют с другими нервными клетками.
  • Нейрон является эмбриологической единицей (единицей развития). Аксон и дендриты нейрона растут от тела клетки во время всего эмбрионального развития, и их рост завершается свободными окончаниями.
  • С. Рамон-и-Кахаль обнаружил, что на конце растущего отростка имеется утолщение - растущий конус. Позже было показано, что растущие конусы способны совершать амебовидные движения, чтобы достичь конечной цели.
  • С. Рамон-и-Кахаль выявил характерные структуры на дендритах, которые по их виду были названы им «шипиками». В настоящее время доказано, что шипики являются частью синаптического аппарата на дендритах. Еще С. Рамон-и-Кахаль предположил, что увеличение шипиков на дендритах может быть связано с обучением и формированием памяти.
  • Нейрон является метаболической (трофической) единицей. Дистальный отдел нервного волокна дегенерирует в результате перерезки нервного волокна (антероградная дегенерация). После перерезки клетки наблюдается атрофия тела клетки (ретроградная дегенерация). Однако дегенерация не распространяется за пределы поврежденного нейрона.
  • Нервная система состоит из популяции нейронов, организованных в функциональные системы.
  • В рамки нейронной доктрины включен и закон динамической поляризации, сформулированный С. Рамоном-и-Кахалем. Согласно этому закону потенциалы действия или возбуждение идет в одном направлении – в основном от рецептивной поверхности дендритов по телу и от тела на аксон, и завершаются на разветвлениях, контактирующих с другими нейронами. Этот закон выступает как основной принцип функционирования нервных связей.
  • В рамках информационной парадигмы нейрон является основной единицей обработки информации.
  • Окончательным подтверждением нейронной доктрины стало доказательство существования синапсов (как морфологических образований) с использованием электронной микроскопии.
  1. Строение клеточной мембраны.

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной  слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

  1. Физиологические свойства клеток.

Наряду  с нервными клетками выделяют глиальные клеткаи: 
-олигодендроциты 
-астроциты 
-шванновские клетки 
-микроглиоциты 
Глиальные клетки окружают нейроны и в некоторых местах соприкасаются с ними. Число глиальных клеток на порядок выше числа нейронов. Основную роль глиальные клетки играют в формировании миелиновых оболочек. У позвоночных миелиновая оболочка формируется за счет отростков олигодендроцитов, на периферии – за счет шванновских клеток. 
Участки без миелиновых оболочек – перехваты Ренвье, которые играют большую роль в передаче возбуждения. При возбуждении нейроны захватыват ионы натрия и кальция и отдают ионы калия. В межклеточном пространстве в норм колич большую роль играют астроциты (роль губки). Шванновские клетки работают аналогично. Астроциты связаны м/собой контактами и образуют синцитий, эти оболочки тоже проницаемы для ионов калия. 
Роль глиальных клеток: 
-поддержание ионного гомеостаза 
-изоляция нервных клеток 
-участие в обмене медиатов. 
3. Потенциал действия. 
Возникает при деполяризации мембраны до -50мВ – порог. Приводит к открытию потенциал зависимых Na+ и K+ каналов. Через него ионы устремляются по градиенту: Na вовнутрь, а K наружу (пассивный транспорт). Поступление натрия внутрь обеспечивает восходящую фазу ПД (деполяризации). Открытие калиевых каналов запаздывает, К начинает выходить из клеток и рост ПД замедляется – нисходящая фаза (реполяризация). Причиной остановки деполяризации и развития реполяризации служат: 
- увеличение деполяризации: МП достиг натриевого равновесия, электрохимический градиент для натрия уменьшается, т.е. уменьшается сила засасывания натрия. 
- при деполяризации мембраны происходит закрытие натриевых каналов => уменьшается проницаемость натрия. 
- открытие калиевых каналов, достигается калиевое равновесие. 
В какой-то момент величина натриевого тока уравновеш с величиной калиевого тока => прекращается изменение МП, что соответствует пику ПД, но величина входящего натриевого тока уменьш, а К увеличивается, возникает смещение равновесия в сторону калиевого тока и нач процесс реполяризации. 
В кардиомиоцитах возможно замедление МП и формируется плато. 
Следовая гиперполяризация. Обуславливается: 
- ионной природой 
- метаболической природой 
Ионная природа СГ связана с тем, что после достижения заряда величины МПП, К-каналы еще какое то время остаются открытыми, в результате МП смещается и становится равным величине К-равновесия. При метаболической природе транспорт натрия обеспечивается Na- насосом, требующим АТФ. 
В основе следовой деполяризации лежит ионный механизм: накапл К у наружн пов-ти мембраны. В результате инактивации Na-каналов формируется явление рефрактерности (способность клеток не отвечать на повт раздражение), но идет реполяризация.

  1. Классификация нейронов.

Структурная классификация 

На основании  числа и расположения дендритов  и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные  нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные  нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная  классификация

По положению  в рефлекторной дуге различают афферентные  нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация

Морфологическое строение нейронов многообразно. В  связи с этим при классификации  нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину нейрона и наличие специализированных оболочек.

По форме  клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными  и т. д. Размер тела нейрона варьирует  от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см.

По количеству отростков выделяют следующие морфологические  типы нейронов:

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.
  1. Особенности органелл нервных клеток.

Нейроны обладают рядом признаков, общих  для всех клеток тела. Независимо от своего местонахождения и функций любой нейрон, как и всякая другая клетка, имеет плазматическую мембрану, определяющую границы индивидуальной клетки. Когда нейрон взаимодействует с другими нейронами или улавливает изменения в локальной среде, он делает это с помощью плазматической мембраны и заключенных в ней молекулярных механизмов.

Все, что  находится внутри плазматической мембраны (кроме ядра), называется цитоплазмой. Здесь содержатся цитоплазматические органеллы, необходимые для существования нейрона и выполнения им своей работы (см. рис. 27 и 28). Митохондрии обеспечивают клетку энергией, используя сахар и кислород для синтеза специальных высокоэнергетических молекул, расходуемых клеткой по мере надобности. Микротрубочки тонкие опорные структуры — помогают нейрону сохранять определенную форму. Сеть внутренних мембранных канальцев, с помощью которых клетка распределяет продукты, необходимые для ее функционирования, называется эндоплазматическим ретикуломом.

Информация о работе Шпаргалка по "Анатомии"