История развития математики

Автор: Пользователь скрыл имя, 17 Декабря 2012 в 07:49, контрольная работа

Краткое описание

Место математики в системе научных знаний. Источники возникновения и развития математических теорий. Значение математики в процессе познания.

Файлы: 1 файл

История развития математики.docx

— 39.56 Кб (Скачать)

1.Место математики в  системе научных знаний. Источники  возникновения и развития математических  теорий. Значение математики в  процессе познания. .

Без математики, невозможна ни одна из современных точных наук. Это связано с тем, что сама математика не является естественной наукой в полном смысле этого понятия, поскольку не занимается изучением каких-либо объектов или явлений реального мира. В основе математики лежат аксиомы, придуманные человеком. Для математика не имеет решающего значения вопрос, выполняются ли эти аксиомы в реальности или нет (напр. в настоящее время благополучно сосуществует несколько геометрий, основанных на несовместных друг с другом системах аксиом). Если математика заботит лишь логическая строгость его выводов, делаемых на основе аксиом и предшествующих теорем, естествоиспытателю важно, соответствует ли его теоретическое построение реальности. При этом в качестве критерия истинности естественнонаучных знаний выступает эксперимент, в ходе которого осуществляется проверка теоретических выводов. В ходе изучения свойств реальных объектов часто оказывается так, что они приближенно соответствуют аксиоматике того или иного раздела математики (напр. положение небольшого тела можно приближенно описать, задав три его координаты, совокупность которых можно рассматривать как вектор в трехмерном пространстве). При этом ранее доказанные в математике утверждения (теоремы) оказываются применимыми к таким объектам. Кроме сказанного, математика играет роль очень лаконичного, экономного и емкого языка, термины которого применимы к внешне совершенно разнородным объектам окружающего мира (вектором можно назвать и совокупность координат точки, и характеристику силового поля, и компонентный состав химической смести, и характеристику экономико-географического положения местности). Очевидно, что более простые объекты нашего мира удовлетворяют более простым системам аксиом, следствия из которых математиками изучены более полно. Поэтому естественные науки “низших” уровней оказываются более математизированными.  Опыт развития современного естествознания показывает, что на определенном этапе развития естественно научных дисциплин неизбежно происходит их математизация, результатом которой является создание логически стройных формализованных теорий и дальнейшее ускоренное развитие дисциплины.

 История развития математики – это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох. Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями. Например, один, два, много… Эти нечисловые понятия всегда ограждали сферу математики. Математика придавала законченный вид всем наукам, где она применялась. В Европе сложилось разделение на гуманитарные и естественные науки по степени влияния математики на эти части. Математика развивалась главным образом в растущих торговых городах. Горожан интересовал счет, арифметика, вычисления. Типичен для этого периода Иоганн Мюллер, ведущая математическая фигура 15-го столетия. Он перевел Птолемея, Герона, Архимеда. Он положил много труда на вычисление тригонометрических таблиц, составил таблицу синусов с интервалом в одну минуту. Значения синусов рассматривались как отрезки, представлявшие полухорды соответствующих углов в круге, поэтому они зависели от длины радиуса. Развитие анализа получило мощный импульс, когда была написана «Геометрия» Декарта. Она включила в алгебру всю область классической геометрии. Декарт создал аналитическую геометрию. Ферма и Паскаль стали основателями математической теории вероятностей. Постепенное формирование интереса к задачам, связанным с вероятностями, происходило прежде всего под влиянием страхового дела. Период элементарной математики заканчивается, когда центр тяжести математических интересов переносится в область математики переменных величин. Еще в математике Древнего мира на материале изучения тригонометрических функций и при составлении их таблиц формируются представления о функциональной зависимости. Таким образом, весь период до 17 в. остается периодом элементарной математики. В целом же математика прошла гигантский путь в период от зарождения счета на пальцах до сложнейших теорем

Главенство математики, как царицы, и основы всех наук, было заложено Пифагором, а её введение в философию принадлежит  Платону. Такое представление, что  материя построена по математическим законам и поэтому весь реальный мир и сущность видимых вещей  могут быть выражены только математикой, привело эту науку в ХХ веке к развитию всё более сложных  методов и направлений, которые, как убеждены теоретики, способны описать  сверхсложное мироздание. Математика, оставаясь в полной уверенности  естественности своих теорий, ушла «в отрыв» от естествознания, пошла  своей дорогой развития. Построения типа многомерных или искривлённых пространств подменили необходимость  «пропедевтики миропонимания», к  которой призывал математик с  мировой известностью Н.Н. Моисеев. Нельзя соглашаться с современными теоретиками и, даже, с великим Платоном! Устройство мира, а также мир чувств, искусство музыки, поэзии, живописи не подвластны математике. Особенность математического метода познания - широкая применимость полученных выражений, которая является следствием подобия законов организации материи на разных уровнях иерархии. Математика - это мощное оружие науки. Поэтому великим достижением науки является математическая теория электромагнетизма, построенная Максвеллом по аналогии с законами движения жидкости. Однако недопустима слепая вера в математические выводы, и теория Максвелла через столетие потребовала существенных поправок, которые учитывают различие электромагнитной среды от жидкости. Это сделали Г.В. Николаев и С. Маринов. Другая особенность математического метода познания - относительная простота получения результата, когда требуется только работа мозга, и когда без приборов, многолетних наблюдений и экспериментальных исследований можно вывести формулы и сформулировать «открытие». Оно реально может соответствовать, а может оказаться и не соответствующим природным законам. Эта простота привлекла множество учёных, десятки из которых стали Нобелевскими лауреатами.

 

 

2.Белковые молекулы как основа  жизни. Аминокислоты. Строение, свойства  и функции белков.

   Во всех растениях и животных присутствует некое вещество, которое без сомнения является наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна. Это вещество я наименовал — протеин". Так писал еще в 1838 году голландский биохимик Жерар Мюльдер, который впервые открыл существование в природе белковых тел и сформулировал свою теорию протеина. Слово "протеин" (белок) происходит от греческого слова "протейос", что означает "занимающий первое место". И в самом деле, все живое на земле содержит белки. Они составляют около 50 % сухого веса тела всех организмов. У вирусов содержание белков колеблется в пределах от 45 до 95 %. Белки, или, как их иначе называют, протеины, имеют очень сложное строение и являются наиболее сложными из питательных веществ. Белки — обязательная составная часть всех живых клеток. В состав белков входят: углерод, водород, кислород, азот, сера и иногда фосфор. Наиболее характерно для белка наличие в его молекуле азота. Другие питательные вещества азота не содержат. Поэтому белок называют азотосодержащим веществом. Основные азотосодержащие вещества, из которых состоят белки, — это аминокислоты. Количество аминокислот невелико — их известно только 28. Все громадное разнообразие содержащихся в природе белков представляет собой различное сочетание известных аминокислот. От их сочетания зависят свойства и качества белков. Белки играют исключительно важную роль в живой природе. Жизнь немыслима без различных по строению и функциям белков. Белки — это биополимеры сложного строения, макромолекулы (протеины) которых, состоят из остатков аминокислот, соединенных между собой амидной (пептидной) связью. Кроме длинных полимерных цепей, построенных из остатков аминокислот (полипептидных цепей), в макромолекулу белка могут входить также остатки или молекулы других органических соединений. На одном кольце каждой пептидной цепи имеется свободная или ацилированная аминогруппа, на другом — свободная или амидированная карбоксильная группа. Конец цепи с аминогруппой называется М-концом, конец цепи с карбоксильной группой — С-концом пептидной цепи. Между СО-группой одной пептидной группировки и NH-группой другой пептидной группировки могут легко образовываться водородные связи. Группы, входящие в состав радикала R аминокислот, могут вступать во взаимодействие друг с другом, с посторонними веществами и с соседними белковыми и иными молекулами, образуя сложные и разнообразные структуры. В макромолекулу белка входит одна или несколько пептидных цепей, связанных друг с другом поперечными химическими связями, чаще всего через серу (дисульфидные мостики, образуемые остатками цистеина). Химическую структуру пептидных цепей принято называть первичной структурой белка или секвенцией. Для построения пространственной структуры белка пептидные цепи должны принять определенную, свойственную данному белку конфигурацию, которая закрепляется водородными связями, возникающими между пептидными группировками отдельных участков молекулярной цепи. По мере образования водородных связей пептидные цепи закручиваются в спирали, стремясь к образованию максимального числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации. Впервые такая структура на основе рентгеноструктурного анализа была обнаружена при изучении главного белка волос и шерсти-кератина Полингом американским физиком и химиком... Ее назвали а-структурой или а-спиралью. На один виток спирали приходится по 3,6-3,7 остатков аминокислот. Расстояние между витками около 0,54 миллиардной доле метра. Строение спирали стабилизируется внутримолекулярными водородными связями. При растяжении спираль макромолекулы белка превращается в другую структуру, напоминающую линейную. Но образованию правильной спирали часто мешают силы отталкивания или притяжения, возникающие между группами аминокислот, или стерические препятствия, например, за счет образования пирролидиновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориентируются в пространстве, принимая в некоторых случаях достаточно вытянутую форму, а иногда сильноизогнутую, свернутую пространственную структуру. Пространственная структура закреплена вследствие взаимодействия радикалов R и аминокислот с образованием дисульфидных мостиков, водородных связей, ионных пар или других химических либо физических связей. Именно пространственная структура белка определяет химические и биологические свойства белков. В зависимости от пространственной структуры все белки делятся на два больших класса: фибриллярные (они используются природой как структурный материал) и глобулярные (ферменты, антитела, некоторые гормоны и др.). Полипептидные цепи фибриллярных белков имеют форму спирали, которая закреплена расположенными вдоль цепи внутримолекулярными водородными связями. В волокнах фибриллярных белков закрученные пептидные цепи расположены параллельно оси волокна, они как бы ориентированы относительно друг друга, располагаются рядом, образуя, нитевидные структуры и имеют высокую степень асимметрии. Фибриллярные белки плохо растворимы или совсем нерастворимы в воде. При растворении в воде они образуют растворы высокой вязкости. К фибриллярным белкам относятся белки, входящие в состав тканей и покровных образований. Это миозин-белок мышечных тканей; коллаген, являющийся основой седиментационных тканей и кожных покровов; кератин, входящий в состав волос, роговых покровов, шерсти и перьев. К этому же классу белков относится белок натурального шелка — фиброин, вязкая сиропообразная жидкость, затвердевающая на воздухе в прочную нерастворимую нить. Этот белок имеет вытянутые полипептидные цепи, соединенные друг с другом межмолекулярными водородными связями, что и определяет, по-видимому, высокую механическую прочность натурального шелка. Пептидные цепи глобулярных белков сильно изогнуты, свернуты и часто имеют форму жестких шариков-глобул. Молекулы глобулярных белков обладают низкой степенью асимметрии, они хорошо растворимы в воде, причем вязкость их растворов невелика. Это прежде всего белки крови: гемоглобин, альбумин, глобулин и др. Следует отметить условность деления белков на фибриллярные и глобулярные, т.к существует большое число белков с промежуточной структурой.  Свойства белка могут сильно изменяться при замене одной аминокислоты другой. Это объясняется изменением конфигураций пептидных цепей и условий образования пространственной структуры белка, которая, в конечном счете, определяет его функции в организме. Число аминокислотных остатков, входящих в молекулы отдельных белков, весьма различно: в инсулине 51, в миоглобине — около 140. Поэтому и относительная молекулярная масса белков колеблется в очень широких пределах — от 10 тысяч до многих миллионов Меньшая молекулярная масса может быть у простейших ферментов и некоторых гормонов белковой природы. Например, молекулярная масса гормона инсулина около 6500, а белка вируса гриппа — 320 000 000. Вещества белковой природы (состоящие из остатков аминокислот, соединенных между собой пептидной связью), имеющие относительно меньшую молекулярную массу и меньшую степень пространственной организации макромолекулы, называются полипептидами. Провести резкую границу между белками и полипептидами трудно. В большинстве случаев белки отличаются от других природных полимеров тем, что чистый индивидуальный белок содержит только молекулы одинакового строения и массы. Строением белков объясняются их весьма разнообразные свойства. Они имеют разную растворимость: некоторые растворяются в воде, другие — в разбавленных растворах нейтральных солей, а некоторые совсем не обладают свойством растворимости (например, белки покровных тканей). При растворении белков в воде образуется своеобразная молекулярно-дисперсная система (раствор высокомолекулярного вещества). Некоторые белки могут быть выделены в виде кристаллов (белок куриного яйца, гемоглобина крови). Белки играют важнейшую роль в жизнедеятельности всех организмов. При пищеварении белковые молекулы перевариваются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и клетки организма. Здесь наибольшая часть аминокислот расходуется на синтез белков различных органов и тканей, часть на синтез гормонов, ферментов и других биологически важных веществ, а остальные служат как энергетический материал. Белки выполняют каталитические (ферменты), регуляторные (гормоны), транспортные (гемоглобин, церулоплазмин и др.), защитные (антитела, тромбин и др.) функции.  Белки — важнейшие компоненты пищи человека и корма животных. Совокупность непрерывно протекающих химических превращений белков занимает ведущее место в обмене веществ организмов. Скорость обновления белков у живых организмов зависит от содержания белков в пище, а также его биологической ценности, которая определяется наличием и соотношением незаменимых аминокислот. Белки растений беднее белков животного происхождения по содержанию незаменимых аминокислот, особенно лизина, метионина, триптофана. Белки сои и картофеля по аминокислотному составу наиболее близки белкам животных. Отсутствие в корме незаменимых аминокислот приходит к тяжёлым нарушениям азотистого обмена. Поэтому селекция зерновых культур направлена, в частности, и на повышение качества белкового состава зерна.

 

3.Классификация живого.

Построение естественной системы  органического мира является непрерывным  процессом. Это связано с бесконечной  серией все углубляющихся и усложняющихся  исследований. В настоящее время  с учетом ископаемого и современного материала выделяют от 4 до 26 царств, от 33 до 132 типов, от 100 до 200 классов, а  общее число видов оценивается  в несколько миллионов. Естественно, что системы органического мира, построенные в различные времена, существенно отличаются друг от друга. Большинство классификаций современных  групп органического мира построены  на основе кладистического метода, или кладистики (от греч. klados - ветвь). Кладистика - один из вариантов построения родословного древа органического  мира, базируемого на степени родства, но без учета геохронологической последовательности. Полученные таким  методом родословные благодаря  эмбриологическим, цитологическим и  другим исследованиям в целом  достаточно объективно отражают уровни эволюции и степень родства групп. Тем не менее, без учета палеонтологических данных, то есть геохронологии, анализа  признаков «предок-потомок» и «братья-сестры», основного звена развития и т.д., построение относительно стабильной филогенетической системы органического мира невозможно. Теория и практика классификации органических объектов получили название таксономия (от греч. taxis - расположение, строй, закон). Необходимо различать два понятия: таксоны и таксономические категории, то есть ранги таксонов. Число таксонов как биологических объектов по мере познания органического мира все время возрастает. Считают, что понятия «род» и «вид», а также бинарное название (биномен) вида впервые предложил в середине XVI века Конрад Геснер. Бинарная номенклатура (от лат. binarius - состоящий из двух частей и nomenclatura - перечень имен) означает, что вид получает двойное наименование: первое слово отвечало названию рода, а второе представляло соответственно видовое название, например Betula alba, то есть Береза белая. Для ботанических таксонов в ранге отряда и типа используются соответственно порядок и отдел, хотя некоторые авторы считают, что типу в царстве животных соответствует подотдел в царстве растений. Систему органического мира изображают в двух основных вариантах: в виде родословного древа, ветви которого связаны родственными отношениями и соответствуют определенным таксонам, или как перечень названий таксонов в иерархической последовательности. Излагаемая ниже система включает два надцарства и пять царств:

Для двух наиболее крупных царств - растений и животных - принята следующая  иерархия высших таксонов:

 

Многие организмы бактериального, растительного и животного происхождения  на одноклеточном уровне имеют ряд  сходных черт. Современные сторонники обособления царства Protista включают в него как одноклеточных эукариот, так и многоклеточные водоросли. Основу живых организмов составляет клетка, которая функционирует как самостоятельный организм - разнообразные одноклеточные, либо клетки являются составной частью многоклеточных. Основное содержимое клетки - цитоплазма заключает одно или несколько ядер, вакуоли, митохондрии и т.д. Наличие ядра, представляющего собой генетический аппарат, или отсутствие оформленного ядра является морфологическим признаком для разграничения надцарства прокариот (доядерные) и эукариот (ядерные). Существует гипотеза, что на первых этапах эволюции органического мира широко проявлялся процесс возникновения более сложных организмов за счет слияния нескольких простых (симбиогенез, эндосимбиоз). Современная эукариотная клетка возникла в результате длительных и многократных эндосимбиозов. Возможно, что такие клеточные структуры, как реснички, жгутики, центриоли, появились за счет серии внедрений различных бактерий и цианобионтов.

Надцарство доядерные  организмы. Superregnum Procaryota Это одноклеточные и колониальные организмы, не имеющие обособленного ядра. Цитоплазма имеет стенку, генетическая информация сосредоточена в единственной хромосоме. Размеры прокариот от 0,015 мкм до 20 см. Они появились в интервале 3,8-3,1 млрд лет. Прокариоты разделяются на два царства: бактерии и цианобионты. Обмен веществ осуществляется в процессе хемосинтеза и фотосинтеза.

Царство Бактерии. Regnum Bacteria Бактерии представляют собой микроскопические организмы, размеры которых обычно около 1-5 мкм. Гигантские бактерии размером до 10 000 мкм обнаружены в денсали. Среди бактерий встречаются автотрофные и гетеротрофные формы. Первые создают органические вещества из неорганических, вторые используют готовые органические вещества. Большинство бактерий являются автотрофами, обычно их называют литотрофами. Процессы обмена веществ у автотрофных бактерий идут без использования света (хемосинтез, хемолитотрофы) либо только на свету (фотосинтез, фотолитотрофы).

 

Некоторые исследователи объединяют с бактериями вирусы, полагая, что  упрощение их строения обусловлено  способом существования - внутриклеточные  паразиты. Другие рассматривают их как доклеточную форму жизни  и выделяют в самостоятельное  царство Virae. Вирусы в ископаемом состоянии  пока не обнаружены.

Царство Цианобионты. Regnum Cyanobionta Одиночные и колониальные организмы с постоянной формой клеток без обособленного ядра. Размеры одиночных форм микроскопические - около 10 мкм. Размеры колоний, а особенно продуктов их жизнедеятельности (строматолиты) могут достигать многих сотен метров. Колониальные формы покрыты общей слизистой оболочкой. В самом организме, на его поверхности и в слизистой оболочке может происходить накопление карбонатов, приводящее в дальнейшем к формированию известняков. Известняковые слоистые образования получили название строматолитов.

Надцарство ядерные  организмы. Superregnum Eucaryota Эукариоты - одноклеточные или многоклеточные организмы, разделяющиеся на три царства: растения, животные и грибы. В отличие от прокариот они имеют обособленное ядро. Размеры эукариот изменяются в диапазоне от 10 мкм (одноклеточные) до 33 м (длина китообразных) и 100 м (высота некоторых гигантских хвойных). Эукариоты появились позднее прокариот, скорее всего на уровне 1,5-1,7 млрд. лет тому назад (ранний протерозой), хотя не исключено и более раннее возникновение.

Царство Растения. Regnum Phyta.

Это разнообразные, преимущественно  неподвижные одноклеточные и  многоклеточные организмы, имеющие  верхушечный рост, плотные, преимущественно  целлюлозные оболочки клеток и автотрофный  способ питания. Для всех растений характерен фотосинтез: при помощи энергии света, поглощаемой хлорофиллом, реже другими  пигментами, они выделяют молекулярный кислород, а из неорганических соединений создают органические. Царство растений разделяется на два подцарства, отличающиеся между собой уровнем организации и средой обитания: Thallophyta (низшие растения) и Telomophyta (высшие растения). Первые обитают в разнообразных водных бассейнах, и для них используется собирательное название «водоросли», то есть растущие в воде. Высшие растения обитают в наземных условиях, встречаясь почти на всех широтах, лишь небольшое число из них ведет вторичноводный образ жизни.

Подцарство Низшие растения. Subregnum Thallophyta Это низшие растения - одноклеточные и многоклеточные организмы, которые обитают в разнообразных водных бассейнах, изредка они живут в почве. Водоросли имеют единое тело (таллом, слоевище), в котором не выделяются корень, стебель и листья. В основу выделения отделов, число которых превышает 10, положены число клеток (одноклеточные и многоклеточные), различный набор окрашивающих пигментов и особенности минерального скелета.

Подцарство Высшие растения. Subregnum Telomophyta. Отличается от подцарства низших растений следующими особенностями: 1тело расчленено на корень, стебель, листья и органы размножения; 2)специализация клеток приводит к образованию различных специфических тканей, осуществляющих проводящую, защитную, механическую и другие функции; 3)среда обитания наземная, хотя имеются некоторые вторично-водные формы; 4)закономерное чередование полового (гаметофит) и бесполого (спорофит) поколений. В соответствии со способом размножения подцарство высших растений разделено на два надотдела: Sporophyta (споровые) и Spermatophyta (семенные).

Надотдел Споровые растения. Superdivisio Sporophyta Споровые растения характеризуются следующими признаками: 1) размножение осуществляется с помощью спор; 2) гаметофит свободноживущий; 3) ксилема состоит из трахеид - удлиненных клеток с толстой оболочкой, которая несет разнообразную скульптуру и поры; 4) эволюция споровых связана с выходом растений на сушу и формированием ствола, листьев и корня. К споровым растениям относится пять отделов: моховидные, риниофиты, плауновидные, хвощевидные и папоротниковидные.

 Надотдел Семенные растения. Superdivisio Spermatophyta Семенные растения характеризуются следующими признаками: 1) размножение осуществляется при помощи семян. Общий признак голосеменных и покрытосеменных растений - наличие семени, но у голосеменных отсутствует завязь, поэтому семя считают голым; 2) мегаспоры созревают на спорофите и не покидают его; 3) гаметофит не существует как самостоятельное растение; 4) впервые появляется сосудистая система. К семенным растениям отнесены два отдела: пинофиты, или голосеменные, и магнолиофиты, или покрытосеменные. Семенные растения появились в позднем девоне, в современной флоре они резко преобладают над споровыми.

Царство Грибы. Regnum Fungi  Царство грибов сочетает свойства, как растений, так и животных. Общие признаки грибов и растений: неподвижность, верхушечный рост и размножение с помощью спор. Вместе с тем у грибов, как и у животных, отсутствует фотосинтез, в продуктах обмена присутствует мочевина, а в плотных оболочках клеток имеется хитин, поэтому оболочки клеток могут сохраняться в ископаемом состоянии. Известно около 100 тыс. видов грибов. По типу питания грибы являются гетеротрофами: сапротрофами, паразитами, редко хищниками.

Информация о работе История развития математики