Архитектура микропроцессора

Автор: Пользователь скрыл имя, 21 Марта 2013 в 17:52, реферат

Краткое описание

Разрядность МП обозначается m/n/k/ и включает:
m - разрядность внутренних регистров, определяет принадлежность к тому или иному классу процессоров;
n - разрядность шины данных, определяет скорость передачи информации;
k - разрядность шины адреса, определяет размер адресного пространства. Например, МП i8088 характеризуется значениями m/n/k=16/8/20;

Файлы: 1 файл

Otchet1.docx

— 1.25 Мб (Скачать)

1Архитектура микропроцессора

1.1.Основные характеристики микропроцессора 
Микропроцессор характеризуется:  
    1) тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ;  
   2) разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов.  
Разрядность МП обозначается m/n/k/ и включает:  
m - разрядность внутренних регистров, определяет принадлежность к тому или иному классу процессоров;  
n - разрядность шины данных, определяет скорость передачи информации;  
k - разрядность шины адреса, определяет размер адресного пространства. Например, МП i8088 характеризуется значениями m/n/k=16/8/20;  
3) архитектурой. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы. Выделяют понятия микроархитектуры и макроархитектуры.  
 Микроархитектура микропроцессора - это аппаратная организация и логическая структура микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.  
      Макроархитектура - это система команд, типы обрабатываемых данных, режимы адресации и принципы работы микропроцессора.  
В общем случае под архитектурой ЭВМ понимается абстрактное представление машины в терминах основных функциональных модулей, языка ЭВМ, структуры данных.  
    1.2 Структура типового микропроцессора 
       Архитектура типичной небольшой вычислительной системы на основе микроЭВМ показана на рис. 1.1 Такая микроЭВМ содержит все 5 основных блоков цифровой машины: устройство ввода информации, управляющее устройство (УУ), арифметико-логическое устройство (АЛУ) (входящие в состав микропроцессора), запоминающие устройства (ЗУ) и устройство вывода информации.

 
Рис.1. Архитектура типового микропроцессора. 
   Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.  
    Постоянное запоминающее устройство (ПЗУ) в микроЭВМ содержит некоторую программу (на практике программу инициализации ЭВМ). Программы могут быть загружены в запоминающее устройство с произвольной выборкой (ЗУПВ) и из внешнего запоминающего устройства (ВЗУ). Это программы пользователя.  
В качестве примера, иллюстрирующего работу микроЭВМ, рассмотрим процедуру, для реализации которой нужно выполнить следующую последовательность элементарных операций:  
    1. Нажать клавишу с буквой "А" на клавиатуре.  
    2. Поместить букву "А" в память микроЭВМ.  
    3. Вывести букву "А" на экран дисплея.  
Это типичная процедура ввода-запоминания-вывода, рассмотрение которой дает возможность пояснить принципы использования некоторых устройств, входящих в микроЭВМ.  
    На рис 1.2 приведена подробная диаграмма выполнения процедуры ввода-запоминания-вывода. Обратите внимание, что команды уже загружены в первые шесть ячеек памяти. Хранимая программа содержит следующую цепочку команд:  
      1. Ввести данные из порта ввода 1.  
      2. Запомнить данные в ячейке памяти 200.  
      3. Переслать данные в порт вывода 10.  
 
Рис. 1.2. Диаграмма выполнения процедуры ввода-запоминания-вывода.  
    В данной программе всего три команды, хотя на рис. 2.2 может показаться, что в памяти программ записано шесть команд. Это связано с тем, что команда обычно разбивается на части. Первая часть команды 1 в приведенной выше программе - команда ввода данных. Во второй части команды 1 указывается, откуда нужно ввести данные (из порта 1). Первая часть команды, предписывающая конкретное действие, называется кодом операции (КОП), а вторая часть - операндом. Код операции и операнд размещаются в отдельных ячейках памяти программ. На рис. 2.2 КОП хранится в ячейке 100, а код операнда - в ячейке 101 (порт 1); последний указывает откуда нужно взять информацию. В МП на рис. 2.2 выделены еще два новых блока - регистры: аккумулятор и регистр команд.  
   Рассмотрим прохождение команд и данных внутри микроЭВМ с помощью занумерованных кружков на диаграмме. Напомним, что микропроцессор - это центральный узел, управляющий перемещением всех данных и выполнением операций.  
    Итак, при выполнении типичной процедуры ввода-запоминания-вывода в микроЭВМ происходит следующая последовательность действий:  
1. МП выдает адрес 100 на шину адреса. По шине управления поступает сигнал, устанавливающий память программ (конкретную микросхему) в режим считывания.  
2. ЗУ программ пересылает первую команду ("Ввести данные") по шине данных, и МП получает это закодированное сообщение. Команда помещается в регистр команд. МП декодирует (интерпретирует) полученную команду и определяет, что для команды нужен операнд.  
3. МП выдает адрес 101 на ША; ШУ используется для перевода памяти программ в режим считывания.  
4. Из памяти программ на ШД пересылается операнд "Из порта 1". Этот операнд находится в программной памяти в ячейке 101. Код операнда (содержащий адрес порта 1) передается по ШД к МП и направляется в регистр команд. МП теперь декодирует полную команду ("Ввести данные из порта 1").  
5. МП, используя ША и ШУ, связывающие его с устройством ввода, открывает порт 1. Цифровой код буквы "А" передается в аккумулятор внутри МП и запоминается.Важно отметить, что при обработке каждой программной команды МП действует согласно микропроцедуре выборки-декодирования-исполнения.  
6. МП обращается к ячейке 102 по ША. ШУ используется для перевода памяти программ в режим считывания.  
7. Код команды "Запомнить данные" подается на ШД и пересылается в МП, где помещается в регистр команд.  
8. МП дешифрирует эту команду и определяет, что для нее нужен операнд. МП обращается к ячейке памяти 103 и приводит в активное состояние вход считывания микросхем памяти программ.  
9. Из памяти программ на ШД пересылается код сообщения "В ячейке памяти 200". МП воспринимает этот операнд и помещает его в регистр команд. Полная команда "Запомнить данные в ячейке памяти 200" выбрана из памяти программ и декодирована.  
10. Теперь начинается процесс выполнения команды. МП пересылает адрес 200 на ША и активизирует вход записи, относящийся к памяти данных.  
11. МП направляет хранящуюся в аккумуляторе информацию в память данных. Код буквы "А" передается по ШД и записывается в ячейку 200 этой памяти. Выполнена вторая команда. Процесс запоминания не разрушает содержимого аккумулятора. В нем по-прежнему находится код буквы "А".  
12. МП обращается к ячейке памяти 104 для выбора очередной команды и переводит память программ в режим считывания.  
13. Код команды вывода данных пересылается по ШД к МП, который помещает ее в регистр команд, дешифрирует и определяет, что нужен операнд.  
14. МП выдает адрес 105 на ША и устанавливает память программ в режим считывания.  
15. Из памяти программ по ШД к МП поступает код операнда "В порт 10", который далее помещается в регистр команд.  
16. МП дешифрирует полную команду "Вывести данные в порт 10". С помощью ША и ШУ, связывающих его с устройством вывода, МП открывает порт 10, пересылает код буквы "А" (все еще находящийся в аккумуляторе) по ШД. Буква "А" выводится через порт 10 на экран дисплея.  
     В большинстве микропроцессорных систем (МПС) передача информации осуществляется способом, аналогичным рассмотренному выше. Наиболее существенные различия возможны в блоках ввода и вывода информации.  
Подчеркнем еще раз, что именно микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения. Однако фактическая последовательность операций в МПС определяется командами, записанными в памяти программ.  
Таким образом, в МПС микропроцессор выполняет следующие функции:  
- выборку команд программы из основной памяти;  
- дешифрацию команд;  
- выполнение арифметических, логических и других операций, закодированных в командах;  
- управление пересылкой информации между регистрами и основной памятью, между устройствами ввода/вывода;  
- отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств;  
- управление и координацию работы основных узлов МП.  
1.3 Система команд 
      Проектирование системы команд оказывает влияние на структуру ЭВМ. Оптимальную систему команд иногда определяют как совокупность команд, которая удовлетворяет требованиям проблемно-ориентированных применений таким образом, что избыточность аппаратных и аппаратно-программных средств на реализацию редко используемых команд оказывается минимальной. В различных программах ЭВМ частота появления команд различна; например, по данным фирмы DEC в программах для ЭВМ семейства PDP-11 наиболее часто встречается команда передачи MOV(B), на ее долю приходится приблизительно 32% всех команд в типичных программах. Систему команд следует выбирать таким образом, чтобы затраты на редко используемые команды были минимальными.  
      При наличии статистических данных можно разработать (выбрать) ЭВМ с эффективной системой команд. Одним из подходов к достижению данной цели является разработка команд длиной в одно слово и кодирование их таким образом, чтобы разряды таких коротких команд использовать оптимально, что позволит сократить время реализации программы и ее длину.  
      Другим подходом к оптимизации системы команд является использование микроинструкций. В этом случае отдельные биты или группы бит команды используются для кодирования нескольких элементарных операций, которые выполняются в одном командном цикле. Эти элементарные операции не требуют обращения к памяти, а последовательность их реализации определяется аппаратной логикой.  
    Сокращение времени выполнения программ и емкости памяти достигается за счет увеличения сложности логики управления.  
    Важной характеристикой команды является ее формат, определяющий структурные элементы команды, каждый из которых интерпретируется определенные образом при ее выполнении. Среди таких элементов (полей) команды выделяют следующие: код операции, определяющий выполняемое действие; адрес ячейки памяти, регистра процессора, внешнего устройства; режим адресации; операнд при использовании непосредственной адресации; код анализируемых признаков для команд условного перехода.  
     Классификация команд по основным признакам представлена на рис. 2.4. Важнейшим структурным элементом формата любой команды является код операции (КОП), определяющей действие, которое должно быть выполнено. Большое число КОП в процессоре очень важно, так как аппаратная реализация команд экономит память и время. Но при выборе ЭВМ необходимо концентрировать внимание на полноте операций с конкретными типами данных, а не только на числе команд, на доступных режимах адресации. Число бит, отводимое под КОП, является функцией полного набора реализуемых команд.  
 
Рис. 1.3. Классификация команд.  
     При использовании фиксированного числа бит под КОП для кодирования всех m команд необходимо в поле КОП выделить двоичных разрядов. Однако, учитывая ограниченную длину слова мини- и микроЭВМ, различное функциональное назначение команд, источники и приемники результатов операций, а также то, что не все команды содержат адресную часть для обращения к памяти и периферийным устройствам, в малых ЭВМ для кодирования команд широко используется принцип кодирования с переменным числом бит под поле КОП для различных групп команд.  
      В некоторых командах необходим только один операнд и они называются однооперандными (или одноадресными) командами в отличие от двухоперандных (или двухадресных), в которых требуются два операнда. При наличии двух операндов командой обычно изменяется только один из них. Так как информация берется только из одной ячейки, эту ячейку называются источником; ячейка, содержимое которой изменяется, называется приемником.  
Ниже приведен формат двухадресной (двухоперандной) команды процессоров СМ.  
 
Формат команд процессоров СМ:  
а) двухадресная команда;  
б) одноадресная команда.

КОП

Мнемоника команды 

Комментарий

0001 
0010 
0110 
1110

MOV 
CMP 
ADD 
SUB

Передача данных 
Сравнение 
Сложение 
Вычитание

0000 
1000


-

Кодирование группы 
одноадресных команд


Примеры кодирования двухадресных команд в процессорах СМ  
     Четырехбитный КОП (биты 15-12) кодирует ряд двухоперандных операций, приведенных в таблице 1. Биты (11-6) и (5-0) для команд данного типа определяют адреса источника и приемника данных. Как видно из таблицы, комбинации 0000 и 1000 поля КОП определяют группы одноадресных команд (рис 1,б). КОП 1 (биты 15-12), соответствующий кодам 0000 и 1000, определяет группу одноадресных команд, а КОП 2 (биты 11-6) кодирует конкретную операцию команд данной группы. Таким образом, команды, использующие один операнд, кодируются 10-битным КОП (биты 15-6).  
     Наиболее гибкая команда требует до четырех операндов. Например, команда сложения может указывать адреса слагаемых, адрес результата и адрес следующей команды. Если для задания адреса требуется 16 бит, то четырехоперандная команда займет 8 байт памяти, не учитывая код операции. Следовательно, получится медленнодействующая ЭВМ с огромной памятью. Поэтому в большинстве микроЭВМ любой команде требуется не более двух операндов. Это достигается следующими приемами:  
    1. Адрес следующей команды указывается только в командах переходов; в остальных случаях очередная команда выбирается из ячеек памяти, следующих за выполненной командой.  
     2. Использование ячейки, в которой находится один из операндов, для запоминания результата (например, сумма запоминается в ячейки первого операнда).  
      Локализацию и обращение к операндам обеспечивают режимы адресации. При введении нескольких режимов адресации необходимо отвести в команде биты, указывающие режимы адресации для каждого операнда. Если предусмотрено восемь режимов адресации, то для задания каждого из них нужно три бита.  
       Почти во всех форматах команд первые биты отводятся для кода операции, но далее форматы команд разных ЭВМ сильно отличаются друг от друга. Остальные биты должны определять операнды или их адреса, и поэтому они используются для комбинации режимов, адресов регистров, адресов памяти, относительных адресов и непосредственных операндов. Обычно длина команды варьируется от 1 до 3 и даже 6 байт.  
По форматам команд можно судить о возможностях ЭВМ.

1.4 Типы архитектур. 
          Существует несколько подходов к классификации микропроцессоров по типу архитектуры. Так, выделяют МП с CISC (Complete Instruction Set Computer) архитектурой, характеризуемой полным набором команд, и RISC (Reduce Instruction Set Computer) архитектурой, которая определяет систему с сокращенным набором команд одинакового формата, выполняемых за один такт МП.  
     Определяя в качестве основной характеристики МП разрядность, выделяют следующие типы МП архитектуры:  
- с фиксированной разрядностью и списком команд (однокристальные);  
- с наращиваемой разрядностью (секционные) и микропрограммным управлением.  
         Анализируя адресные пространства программ и данных, определяют МП с архитектурой фон Неймана (память программ и память данных находятся в едином пространстве и нет никаких признаков, указывающих на тип информации в ячейке памяти) и МП с архитектурой Гарвардской лаборатории (память программ и память данных разделены, имеют свои адресные пространства и способы доступа к ним).  
     Мы рассмотрим более подробно основные типы архитектурных решений, выделяя связь со способами адресации памяти.  
        1. Регистровая архитектура определяется наличием достаточно большого регистрового файла внутри МП. Команды получают возможность обратиться к операндам, расположенным в одной из двух запоминающих сред: оперативной памяти или регистрах. Размер регистра обычно фиксирован и совпадает с размером слова, физически реализованного в оперативной памяти. К любому регистру можно обратиться непосредственно, поскольку регистры представлены в виде массива запоминающих элементов - регистрового файла. Типичным является выполнение арифметических операций только в регистре, при этом команда содержит два операнда (оба операнда в регистре или один операнд в регистре, а второй в оперативной памяти).  
      2. Стековая архитектура дает возможность создать поле памяти с упорядоченной последовательностью записи и выборки информации.  
В общем случае команды неявно адресуются к элементу стека, расположенному на его вершине, или к двум верхним элементам стека.  
      3. Архитектура МП, ориентированная на оперативную память (типа "память-память"), обеспечивает высокую скорость работы и большую информационную емкость рабочих регистров и стека при их организации в оперативной памяти.  
Архитектура этого типа не предполагает явного определения аккумулятора, регистров общего назначения или стека; все операнды команд адресуются к области основной памяти.  
      С точки зрения важности для пользователя-программиста под архитектурой в общем случае понимают совокупность следующих компонентов и характеристик:  
- разрядности адресов и данных;  
- состава, имен и назначения программно-доступных регистров;  
- форматов и системы команд;  
- режимов адресации памяти;  
- способов машинного представления данных разного типа;  
- структуры адресного пространства;  
- способа адресации внешних устройств и средств выполнения операций ввода/вывода;  
- классов прерываний, особенностей инициирования и обработки прерываний.  
1.5 Последовательная передача данных. 
    Использование последовательных линий связи для обмена данными с внешними устройствами возлагает на контроллеры ВУ дополнительные по сравнению с контроллерами для параллельного обмена функции. Во-первых, возникает необходимость преобразования формата данных: из параллельного формата, в котором они поступают в контроллер ВУ из системного интерфейса микроЭВМ, в последовательный при передаче в ВУ и из последовательного в параллельный при приеме данных из ВУ. Во-вторых, требуется реализовать соответствующий режиму работы внешнего устройства способ обмена данными: синхронный или асинхронный.

1.6 Синхронный последовательный интерфейс. 
    Простой контроллер для синхронной передачи данных в ВУ по последовательной линии связи (последовательный интерфейс) представлен на рис. 1.5.  
 
Рис. 1.5. Контроллер последовательной синхронной передачи.  
     Восьмиразрядный адресуемый буферный регистр контроллера А1 служит для временного хранения байта данных до его загрузки в сдвиговый регистр. Запись байта данных в буферный регистр с шины данных системного интерфейса производится так же, как и в параллельном интерфейсе (см. Параллельная передача данных и рис. 3.5), только при наличии единицы в одноразрядном адресуемом регистре состояния контроллера А2. Единица в регистре состояния указывает на готовность контроллера принять очередной байт в буферный регистр. Содержимое регистра А2 передается в процессор по одной из линий шины данных системного интерфейса и используется для формирования управляющего сигнала системного интерфейса "Готовность ВУ". При записи очередного байта в буферный регистр A1 обнуляется регистр состояния А2.  
Программа записи байта данных в буферный регистр аналогична программе из примера 2.1 за исключением команды перехода: вместо команды JNZ m1 (переход, если не ноль) необходимо использовать команду JZ m1 (переход, если ноль).  
       Преобразование данных из параллельного формата, в котором они поступили в буферный регистр контроллера из системного интерфейса, в последовательный и передача их на линию связи производятся в сдвиговом регистре с помощью генератора тактовых импульсов и двоичного трехразрядного счетчика импульсов следующим образом.

 
       Последовательная линия связи контроллера с ВУ подключается к выходу младшего разряда сдвигового регистра. По очередному тактовому импульсу содержимое сдвигового регистра сдвигается на один разряд вправо и в линию связи "Данные" выдается значение очередного разряда. Одновременно со сдвигом в ВУ передается по отдельной линии "Синхронизация" тактовый импульс. Таким образом, каждый передаваемый по линии "Данные" бит информации сопровождается синхронизирующим сигналом по линии "Синхронизация", что обеспечивает его однозначное восприятие на приемном конце последовательной линии связи.  
        Количество переданных в линию тактовых сигналов, а следовательно, и переданных бит информации подсчитывается счетчиком тактовых импульсов. Как только содержимое счетчика становится равным 7, т. е. в линию переданы 8 бит (1 байт) информации, формируется управляющий сигнал "Загрузка", обеспечивающий запись в сдвиговый регистр очередного байта из буферного регистра. Этим же управляющим сигналом устанавливается в "1" регистр состояния. Очередным тактовым импульсом счетчик будет сброшен в "0", и начнется очередной цикл выдачи восьми битов информации из сдвигового регистра в линию связи.  
      Синхронная последовательная передача отдельных битов данных на линию связи должна производиться без какого-либо перерыва, и следующий байт данных должен быть загружен в буферный регистр из системного интерфейса за время, не превышающее времени передачи восьми битов в последовательную линию связи.  
      При записи байта данных в буферный регистр обнуляется регистр состояния контроллера. Нуль в этом регистре указывает, что в линию связи передается байт данных из сдвигового регистра, а следующий передаваемый байт данных загружен в сдвиговый регистр.  
       Контроллер для последовательного синхронного приема данных из ВУ состоит из тех же компонентов, что и контроллер для синхронной последовательной передачи, за исключением генератора тактовых импульсов.  
1.7 Асинхронный последовательный интерфейс. 
      Организация асинхронного последовательного обмена данными с внешним устройством осложняется тем, что на передающей и приемной стороне последовательной линии связи используются настроенные на одну частоту, но физически разные генераторы тактовых импульсов и, следовательно, общая синхронизация отсутствует. Рассмотрим на примерах организацию контроллеров последовательных интерфейсов для последовательных асинхронных передачи и приема данных.  
      Простейший контроллер для асинхронной передачи данных в ВУ по последовательной линии связи представлен на рис. 1.6. Он предназначен для передачи данных в формате с двумя стоповыми битами.  
Рис. 1.6. Контроллер последовательной асинхронной передачи.  
   После передачи очередного байта данных в регистр состояния А2 записывается 1. Единичный выходной сигнал регистра А2 информирует процессор о готовности контроллера к приему следующего байта данных и передаче его по линии связи в ВУ. Этот же сигнал запрещает формирование импульсов со схемы выработки импульсов сдвига - делителя частоты сигналов тактового генератора на 16. Счетчик импульсов сдвига (счетчик по mod 10) находится в нулевом состоянии и его единичный выходной сигнал поступает на вентиль И, подготавливая цепь выработки сигнала загрузки сдвигового регистра.  
     Процесс передачи байта данных начинается с того, что процессор, выполняя команду "Вывод", выставляет этот байт на шине данных. Одновременно процессор формирует управляющий сигнал системного интерфейса "Вывод", по которому производятся запись передаваемого байта в буферный регистр А1, сброс регистра состояния А2 и формирование на вентиле И сигнала "Загрузка". Передаваемый байт переписывается в разряды 1, ... , 8 сдвигового регистра, в нулевой разряд сдвигового регистра записывается 0 (стартовый бит), а в разряды 9 и 10 - 1 (стоповые биты). Кроме того, снимается сигнал "Сброс" с делителя частоты, он начинает накапливать импульсы генератора тактовой частоты и в момент приема шестнадцатого тактового импульса вырабатывает импульс сдвига.  
На выходной линии контроллера "Данные" поддерживается состояние 0 (значение стартового бита) до тех пор, пока не будет выработан первый импульс сдвига. Импульс сдвига изменит состояние счетчика импульсов сдвига и перепишет в нулевой разряд сдвигового регистра первый информационный бит передаваемого байта данных. Состояние, соответствующее значению этого бита, будет поддерживаться на линии "Данные" до следующего импульса сдвига.  
      Аналогично будут переданы остальные информационные биты, первый стоповый бит и, наконец, второй стоповый бит, при передаче которого счетчик импульсов сдвига снова установится в нулевое состояние. Это приведет к записи 1 в регистр состояния А2. Единичный сигнал с выхода регистра А2 запретит формирование импульсов сдвига, а также информирует процессор о готовности к приему нового байта данных. После завершения передачи очередного кадра (стартового бита, информационного байта и двух стоповых бит) контроллер поддерживает в линии связи уровень логической единицы (значение второго стопового бита).  
 
Рис. 1.7. Контроллер последовательного асинхронного приема.  
       Уровень логической единицы поступает по линии "Данные" в контроллер для асинхронного приема данных (рис. 1.7). Этот уровень создает условия для выработки сигнала, запрещающего работу делителя частоты генератора тактовых импульсов. Действительно, после приема предыдущего байта данных счетчик импульсов сдвига (счетчик по mod 9) находится в нулевом состоянии и на вентиль И поступают два единичных сигнала: со счетчика сдвигов и из линии "Данные". На выходе вентиля И вырабатывается сигнал сброса делителя частоты сигналов тактового генератора, запрещающий формирование импульсов сдвига.  
       В момент смены стопового бита на стартовый бит (момент начала передачи нового кадра) на линии "Данные" появится уровень логического нуля и тем самым будет снят сигнал сброса с делителя частоты. Состояние 4-разрядного двоичного счетчика (делителя частоты) начнет изменяться. Когда на счетчике накопится значение 8, он выдаст сигнал, поступающий на входы сдвигового регистра и счетчика импульсов сдвига. Так как частота сигналов генератора тактовых импульсов приемника должна совпадать с частотой генератора тактовых импульсов передатчика, то сдвиг (считывание) бита произойдет примерно на середине временного интервала, отведенного на передачу бита данных, т. е. времени, необходимого для выработки шестнадцати тактовых импульсов. Это делается для уменьшения вероятности ошибки из-за возможного различия частот генераторов передатчика и приемника, искажения формы передаваемых сигналов (переходные процессы) и т. п. Следующий сдвиг произойдет после прохождения шестнадцати тактовых импульсов, т. е. на середине временного интервала передачи первого информационного бита.  
       При приеме в сдвиговый регистр девятого бита кадра (восьмого информационного бита) из него "выдвинется" стартовый бит и, следовательно, в сдвиговом регистре будет размещен весь принятый байт информации. В этот момент счетчик импульсов сдвига придет в нулевое состояние и на его выходе будет выработан единичный сигнал, по которому содержимое сдвигового регистра перепишется в буферный регистр, в регистр состояния А2 запишется 1 и он будет информировать процессор об окончании приема очередного байта, вентиль И подготовится к выработке сигнала "Сброс" (этот сигнал сформируется после прихода первого стопового бита).  
         Получив сигнал готовности (1 в регистре А2), процессор выполнит команду "Ввод". При этом вырабатывается управляющий сигнал системного интерфейса "Ввод", по которому производятся пересылка принятого байта данных из буферного регистра в процессор (сигнал "Чтение") и сброс регистра состояния А2.  
Отметим, что для простоты изложения в контроллере на рис. 14 не показаны схемы контроля стоповых бит принимаемого кадра. Не показаны также схемы контроля четности или нечетности (паритета) передаваемой информации (обычно в передаваемом байте восьмому биту придается значение 0 или 1, так чтобы в этом байте было четное количество единиц). В реальных контроллерах имеются такие схемы, и если контроллер не принимает из линии связи нужного количества стоповых бит или вырабатывается сигнал ошибки паритета в схеме контроля четности, то принятые в текущем кадре биты данных игнорируются и контроллер ожидает поступления нового стартового бита.  
        Обмен данными с ВУ по последовательным линиям связи широко используется в микроЭВМ, особенно в тех случаях, когда не требуется высокой скорости обмена. Вместе с тем применение в них последовательных линий связи с ВУ обусловлено двумя важными причинами. Во-первых, последовательные линии связи просты по своей организации: два провода при симплексной и полудуплексной передаче и максимум четыре - при дуплексной. Во-вторых, в микроЭВМ используются внешние устройства, обмен с которыми необходимо вести в последовательном коде.  
     В современных микроЭВМ применяют, как правило, универсальные контроллеры для последовательного ВВ, обеспечивающие как синхронный, так и асинхронный режим обмена данными с ВУ.  
1.8 Способы обмена информацией в микропроцессорной системе. 
      В ЭВМ применяются три режима ввода/вывода: программно-управляемый ВВ (называемый также программным или нефорсированным ВВ), ВВ по прерываниям (форсированный ВВ) и прямой доступ к памяти. Первый из них характеризуется тем, что инициирование и управление ВВ осуществляется программой, выполняемой процессором, а внешние устройства играют сравнительно пассивную роль и сигнализируют только о своем состоянии, в частности, о готовности к операциям ввода/вывода. Во втором режиме ВВ инициируется не процессором, а внешним устройством, генерирующим специальный сигнал прерывания. Реагируя на этот сигнал готовности устройства к передаче данных, процессор передает управление подпрограмме обслуживания устройства, вызвавшего прерывание. Действия, выполняемые этой подпрограммой, определяются пользователем, а непосредственными операциями ВВ управляет процессор. Наконец, в режиме прямого доступа к памяти, который используется, когда пропускной способности процессора недостаточно, действия процессора приостанавливаются, он отключается от системной шины и не участвует в передачах данных между основной памятью и быстродействующим ВУ. Заметим, что во всех вышеуказанных случаях основные действия, выполняемые на системной магистрали ЭВМ, подчиняются двум основным принципам.  
     1. В процессе взаимодействия любых двух устройств ЭВМ одно из них обязательно выполняет активную, управляющую роль и является задатчиком, второе оказывается управляемым, исполнителем. Чаще всего задатчиком является процессор.  
     2. Другим важным принципом, заложенным в структуру интерфейса, является принцип квитирования (запроса - ответа): каждый управляющий сигнал, посланный задатчиком, подтверждается сигналом исполнителя. При отсутствии ответного сигнала исполнителя в течение заданного интервала времени формируется так называемый тайм-аут, задатчик фиксирует ошибку обмена и прекращает данную операцию.  
1.9 Программно-управляемый ввод/вывод. 
    Данный режим характеризуется тем, что все действия по вводу/выводу реализуются командами прикладной программы. Наиболее простыми эти действия оказываются для "всегда готовых" внешних устройств, например индикатора на светодиодах. При необходимости ВВ в соответствующем месте программы используются команды IN или OUT. Такая передача данных называется синхронным или безусловным ВВ.  
     Однако для большинства ВУ до выполнения операций ВВ надо убедиться в их готовности к обмену, т.е. ВВ является асинхронным. Общее состояние устройства характеризуется флагом готовности READY, называемым также флагом готовности/занятости (READY/BUSY). Иногда состояния готовности и занятости идентифицируются отдельными флагами READY и BUSY, входящими в слово состояния устройства.  
     Процессор проверяет флаг готовности с помощью одной или нескольких команд. Если флаг установлен, то инициируются собственно ввод или вывод одного или нескольких слов данных. Когда же флаг сброшен, процессор выполняет цикл из 2-3 команд с повторной проверкой флага READY до тех пор, пока устройство не будет готово к операциям ВВ (рис. 1.8). Данный цикл называется циклом ожидания готовности ВУ и реализуется в различных процессорах по-разному.  
 
Рис. 1.8. Цикл программного ожидания готовности внешнего устройства.  
     Основной недостаток программного ВВ связан с непроизводительными потерями времени процессора в циклах ожидания. К достоинствам следует отнести простоту его реализации, не требующей дополнительных аппаратных средств.  
1.10 Организация прерываний в микро-ЭВМ. 
     Одной из разновидностей программно-управляемого обмена данными с ВУ в микроЭВМ является обмен с прерыванием программы, отличающийся от асинхронного программно-управляемого обмена тем, что переход к выполнению команд, физически реализующих обмен данными, осуществляется с помощью специальных аппаратных средств. Команды обмена данными в этом случае выделяют в отдельный программный модуль - подпрограмму обработки прерывания. Задачей аппаратных средств обработки прерывания в процессоре микроЭВМ как раз и является приостановка выполнения одной программы (ее еще называют основной программой) и передача управления подпрограмме обработки прерывания. Действия, выполняемые при этом процессором, как правило, те же, что и при обращении к подпрограмме. Только при обращении к подпрограмме они инициируются командой, а при обработке прерывания - управляющим сигналом от ВУ, который называют "Запрос на прерывание" или "Требование прерывания".  
      Эта важная особенность обмена с прерыванием программы позволяет организовать обмен данными с ВУ в произвольные моменты времени, не зависящие от программы, выполняемой в микроЭВМ. Таким образом, появляется возможность обмена данными с ВУ в реальном масштабе времени, определяемом внешней по отношению к микроЭВМ средой. Обмен с прерыванием программы существенным образом экономит время процессора, затрачиваемое на обмен. Это происходит за счет того, что исчезает необходимость в организации программных циклов ожидания готовности ВУ (см. примеры 1.2 и 1.3, Параллельная передача данных), на выполнение которых тратится значительное время, особенно при обмене с медленными ВУ.  
Прерывание программы по требованию ВУ не должно оказывать на прерванную программу никакого влияния кроме увеличения времени ее выполнения за счет приостановки на время выполнения подпрограммы обработки прерывания. Поскольку для выполнения подпрограммы обработки прерывания используются различные регистры процессора (счетчик команд, регистр состояния и т.д.), то информацию, содержащуюся в них в момент прерывания, необходимо сохранить для последующего возврата в прерванную программу.  
      Обычно задача сохранения содержимого счетчика команд и регистра состояния процессора возлагается на аппаратные средства обработки прерывания. Сохранение содержимого других регистров процессора, используемых в подпрограмме обработки прерывания, производится непосредственно в подпрограмме. Отсюда следует достаточно очевидный факт: чем больший объем информации о прерванной программе сохраняется программным путем, тем больше время реакции микроЭВМ на сигнал прерывания, и наоборот. Предпочтительными с точки зрения повышения производительности микроЭВМ (сокращения времени выполнения подпрограмм обработки, а, следовательно, и основной программы) являются уменьшение числа команд, обеспечивающих сохранение информации о прерванной программе, и реализация этих функций аппаратными средствами.  
      Формирование сигналов прерываний - запросов ВУ на обслуживание происходит в контроллерах соответствующих ВУ. В простейших случаях в качестве сигнала прерывания может использоваться сигнал "Готовность ВУ", поступающий из контроллера ВУ в системный интерфейс микроЭВМ. Однако такое простое решение обладает существенным недостатком - процессор не имеет возможности управлять прерываниями, т. е. разрешать или запрещать их для отдельных ВУ. В результате организация обмена данными в режиме прерывания с несколькими ВУ существенно усложняется.  
 
Рис. 1.9. Фрагмент блок-схемы контроллера ВУ с разрядом.  
      "Разрешение прерывания" в регистре состояния и управления  
Для решения этой проблемы регистр состояния и управления контроллера ВУ (рис. 1.9) дополняют еще одним разрядом - "Разрешение прерывания". Запись 1 или 0 в разряд "Разрешение прерывания" производится программным путем по одной из линий шины данных системного интерфейса. Управляющий сигнал системного интерфейса "Запрос на прерывание" формируется с помощью схемы совпадения только при наличии единиц в разрядах "Готовность ВУ" и "Разрешение прерывания" регистра состояния и управления контроллера.  
     Аналогичным путем решается проблемам управления прерываниями в микроЭВМ, в целом. Для этого в регистре состояния процессора выделяется разряд, содержимое которого определяет, разрешены или запрещены прерывания от внешних устройств. Значение этого разряда может устанавливаться программным путем.  
     В микроЭВМ обычно используется одноуровневая система прерываний, т. е. сигналы "Запрос на прерывание" от всех ВУ поступают на один вход процессора. Поэтому возникает проблема идентификации ВУ, запросившего обслуживание, и реализации заданной очередности (приоритета) обслуживания ВУ при одновременном поступлении нескольких сигналов прерывания. Существуют два основных способа идентификации ВУ, запросивших обслуживания:  
- программный опрос регистров состояния (разряд "Готовность ВУ") контроллеров всех ВУ;  
- использование векторов прерывания.  
Организация прерываний с программным опросом готовности предполагает наличие в памяти микроЭВМ единой подпрограммы обслуживания прерываний от всех внешних устройств. Структура такой подпрограммы приведена на рис. 1.10.  
 
Рис. 1.10. Структура единой программы прерываний и ее связь с основной программой.  
      Обслуживание ВУ с помощью единой подпрограммы обработки прерываний производится следующим образом. В конце последнего машинного цикла выполнения очередной команды основной программы процессор проверяет наличие требования прерывания от ВУ. Если сигнал прерывания есть и в процессоре прерывание разрешено, то процессор переключается на выполнение подпрограммы обработки прерываний.  
      После сохранения содержимого регистров процессора, используемых в подпрограмме, начинается последовательный опрос регистров состояния контроллеров всех ВУ, работающих в режиме прерывания. Как только подпрограмма обнаружит готовое к обмену ВУ, сразу выполняются действия по его обслуживанию. Завершается подпрограмма обработки прерывания после опроса готовности всех ВУ и восстановления содержимого регистров процессора.  
       Приоритет ВУ в микроЭВМ с программным опросом готовности внешнего устройства однозначно определяется порядком их опроса в подпрограмме обработки прерываний. Чем раньше в подпрограмме опрашивается готовность ВУ, тем меньше время реакции на его запрос и выше приоритет. Необходимость проверки готовности всех внешних устройств существенно увеличивает время обслуживания тех ВУ, которые опрашиваются последними. Это является основным недостатком рассматриваемого способа организации прерываний. Поэтому обслуживание прерываний с опросом готовности ВУ используется только в тех случаях, когда отсутствуют жесткие требования на время обработки сигналов прерывания внешних устройств.  
       Организация системы прерываний в микроЭВМ с использованием векторов прерываний позволяет устранить указанный недостаток. При такой организации системы прерываний ВУ, запросившее обслуживания, само идентифицирует себя с помощью вектора прерывания - адреса ячейки основной памяти микроЭВМ, в которой хранится либо первая команда подпрограммы обслуживания прерывания данного ВУ, либо адрес начала такой подпрограммы. Таким образом, процессор, получив вектор прерывания, сразу переключается на выполнение требуемой подпрограммы обработки прерывания. В микроЭВМ с векторной системой прерывания каждое ВУ должно иметь собственную подпрограмму обработки прерывания.  
       Различают векторные системы с интерфейсным и внеинтерфейсным вектором. В первом случае вектор прерывания формирует контроллер ВУ, запросившего обслуживания, во втором - контроллер прерываний, общий для всех устройств, работающих в режиме прерываний (IBM-совместимые персональные компьютеры).  
       Рассмотрим организацию векторной системы с интерфейсным вектором. Вектор прерывания выдается контроллером не одновременно с запросом на прерывание, а только по разрешению процессора, как это реализовано в схеме на рис. 1.11. Это делается для того, чтобы исключить одновременную выдачу векторов прерывания от нескольких ВУ. В ответ на сигнал контроллера ВУ "Запрос на прерывание" процессор формирует управляющий сигнал "Предоставление прерывания (вх.)", который разрешает контроллеру ВУ, запросившему обслуживание, выдачу вектора прерывания в шину адреса системного интерфейса. Для этого в контроллере используются регистр вектора прерывания и схема совпадения И3. Регистр вектора прерывания обычно реализуется с помощью перемычек или переключателей, что позволяет пользователю устанавливать для конкретных ВУ требуемые значения векторов прерывания.  
 
Рис. 1.11. Формирование векторов прерывания в контроллере ВУ.  
       Управляющий сигнал "Предоставление прерывания (вых.)" формируется в контроллере ВУ с помощью схемы совпадения И2. Этот сигнал используется для организации последовательного аппаратного опроса готовности ВУ и реализации тем самым требуемых приоритетов ВУ. Процессор при поступлении в него по общей линии системного интерфейса "Запрос на прерывание" сигнала прерывания формирует управляющий сигнал "Предоставление прерывания (вх.)", который поступает сначала в контроллер ВУ с наивысшим приоритетом (рис. 1.12). Если это устройство не требовало обслуживания, то его контроллер пропускает сигнал "Предоставление прерывания" на следующий контроллер, иначе дальнейшее распространение сигнала прекращается и контроллер выдает вектор прерывания на адресноинформационную шину.  
 
Рис. 1.12 Реализация приоритетов ВУ в микроЭВМ с векторной системой прерываний, с интерфейсным вектором (ППР (вх.) - "Предоставление прерывания (входной)"; "ППР (вых.) - Предоставление прерывания (выходной)").  
       Аппаратный опрос готовности ВУ производится гораздо быстрее, нежели программный. Но если обслуживания запросили одновременно два или более ВУ, обслуживание менее приоритетных ВУ будет отложено на время обслуживания более приоритетных, как и в системе прерывания с программным опросом.  
Рассмотренная векторная система прерываний практически полностью соответствует системе прерываний, реализованной в микроЭВМ "Электроника-60". Восьмиразрядный вектор прерывания в "Электронике-60" указывает одну из ячеек памяти с адресами от 0 до (376)8, в которой размещается адрес начала подпрограммы обработки прерывания. В следующей за указанной вектором прерывания ячейке памяти хранится новое содержимое регистра состояния процессора, загружаемое в него при переключении на подпрограмму обработки прерывания. Один из бит нового содержимого регистра состояния процессора запрещает или разрешает прерывания от других ВУ, что позволяет ВУ с более высоким приоритетом прерывать подпрограммы обслуживания ВУ с меньшим приоритетом и наоборот.  
        Векторная система с внеинтерфейсным вектором прерывания используется в IBM-совместимых персональных компьютерах. В этих компьютерах контроллеры внешних устройств не имеют регистров для хранения векторов прерывания, а для идентификации устройств, запросивших обслуживания, используется общий для всех ВУ контроллер прерываний . Ниже приведен пример контроллера прерываний INTEL 8559A.  
       БИС программируемого контроллера прерываний (ПКП) представляет собой устройство, реализующее до восьми уровней запросов на прерывания с возможностью программного маскирования и изменения порядка обслуживания прерываний. За счет каскадного включения БИС ПКП число уровней прерывания может быть расширено до 64 (в архитектуре персонального компьютера IBM PC AT - 16).  
Структурная схема ПКП приведена на рисунке 1.13.  
 
Рис. 1.13. Контроллер прерываний Intel 8259A.  
В состав БИС входят:  
RGI - регистр запретов прерываний; хранит все уровни, на которые поступают запросы IRQx;  
PRB - схема принятия решений по приоритетам; схема идентифицирует приоритет запросов и выбирает запрос с наивысшим приоритетом;  
ISR - регистр обслуживаемых прерываний; сохраняет уровни запросов прерываний, находящиеся на обслуживании ПКП;  
RGM - регистр маскирования прерываний; обеспечивает запрещение одной или нескольких линий запросов прерывания;  
BD - буфер данных; предназначен для сопряжения ПКП с системной шиной данных;  
RWCU - блок управления записью/чтением; принимает управляющие сигналы от микропроцессора и задает режим функционирования ПКП;  
CMP - схема каскадного буфера-компаратора; используется для включения в систему нескольких ПКП;  
CU - схема управления; вырабатывает сигналы прерывания и формирует трехбайтовую команду CALL для выдачи на шину данных.  
      Установка ПКП в исходное состояние и "настройка" его на определенный режим обслуживания прерываний происходит с помощью двух типов команд: команд инициализации (ICW) и команд управления операциями (OCW).  
     Программируемый контроллер прерываний (ПКП) имеет 16 входов запросов прерываний (IRQ 0 - IRQ 15). Контроллер состоит из двух каскадно включенных контроллеров - выход INTR (запрос на прерывание) второго контроллера подключен ко входу IRQ 2 первого контроллера. В качестве примера отметим, что к линии IRQ 0 подключен системный таймер, к линии IRQ 1 - клавиатура, к линии IRQ 8 - часы реального времени и т.д.  
     Упрощенная схема взаимодействия контроллера прерываний с процессором и контроллером шины имеет следующий вид.  
 
Рис. 1.14. Упрощенная схема взаимодействия контроллера прерываний с процессором и контроллером шины в IBM-совместимых персональных компьютерах класса AT.  
      Эта схема функционирует следующим образом. Пусть в некоторый момент времени контроллер клавиатуры с помощью единичного сигнала по линии IRQ 1 известил контроллер прерываний о своей готовности к обмену. В ответ на запрос контроллер прерываний генерирует сигнал INTR (запрос на прерывание) и посылает его на соответствующий вход процессора. Процессор, если маскируемые прерывания разрешены (т.е. установлен флаг прерываний IF в регистре флагов процессора), посылает на контроллер шины сигналы R# - чтение, C# - управление и IO# - ввод/вывод, определяющие тип цикла шины. Контроллер шины, в свою очередь, генерирует два сигнала подтверждения прерывания INTA# и направляет их на контроллер прерываний. По второму импульсу контроллер прерываний выставляет на шину данных восьмибитный номер вектора прерывания, соответствующий данной линии IRQ.  
      В режиме реального адреса ("реальном" режиме) векторы прерываний хранятся в таблице векторов прерываний, которая находится в первом килобайте оперативной памяти. Под каждый вектор отведено 4 байта (2 байта под адрес сегмента и 2 байта под смещение), т.е. в таблице может содержаться 256 векторов. Адрес вектора в таблице - номер вектора - 4.  
      Далее процессор считывает номер вектора прерывания. Сохраняет в стеке содержимое регистра флагов, сбрасывает флаг прерываний IF и помещает в стек адрес возврата в прерванную программу (регистры CS и IP). После этого процессор извлекает из таблицы векторов прерываний адрес подпрограммы обработки прерываний для данного устройства и приступает к ее выполнению.  
Процедура обработки аппаратного прерывания должна завершаться командой конца прерывания EOI (End of Interruption), посылаемой контроллеру прерываний. Для этого необходимо записать байт 20h в порт 20h (для первого контроллера) и в порт A0h (для второго).  
     В IBM PC/XT/AT используется режим прерываний с фиксированными приоритетами. Высшим приоритетом обладает запрос по линии IRQ 0, низшим - IRQ 7. Так как второй контроллер подключен к линии IRQ 2 первого контроллера, то приоритеты линий IRQ в порядке убывания приоритета располагаются следующим образом: IRQ 0, IRQ 1, IRQ 8 - IRQ 15, IRQ 3 - IRQ 7. Если запрос на обслуживание посылают одновременно два устройства с разными приоритетами, то контроллер обслуживает запрос с большим приоритетом, а запрос с меньшим приоритетом блокирует. Блокировка сохраняется до получения команды EOI.  
1.11 Организация прямого доступа к памяти. 
      Одним из способов обмена данными с ВУ является обмен в режиме прямого доступа к памяти (ПДП). В этом режиме обмен данными между ВУ и основной памятью микроЭВМ происходит без участия процессора. Обменом в режиме ПДП управляет не программа, выполняемая процессором, а электронные схемы, внешние по отношению к процессору. Обычно схемы, управляющие обменом в режиме ПДП, размещаются в специальном контроллере, который называется контроллером прямого доступа к памяти.  
      Обмен данными в режиме ПДП позволяет использовать в микроЭВМ быстродействующие внешние запоминающие устройства, такие, например, как накопители на жестких магнитных дисках, поскольку ПДП может обеспечить время обмена одним байтом данных между памятью и ВЗУ, равное циклу обращения к памяти.  
      Для реализации режима прямого доступа к памяти необходимо обеспечить непосредственную связь контроллера ПДП и памяти микроЭВМ. Для этой цели можно было бы использовать специально выделенные шины адреса и данных, связывающие контроллер ПДП с основной памятью. Но такое решение нельзя признать оптимальным, так как это приведет к значительному усложнению микроЭВМ в целом, особенно при подключении нескольких ВЗУ. В целях сокращения количества линий в шинах микроЭВМ контроллер ПДП подключается к памяти посредством шин адреса и данных системного интерфейса. При этом возникает проблема совместного использования шин системного интерфейса процессором и контроллером ПДП. Можно выделить два основных способа ее решения: реализация обмена в режиме ПДП с "захватом цикла" и в режиме ПДП с блокировкой процессора.  
       Существуют две разновидности прямого доступа к памяти с "захватом цикла". Наиболее простой способ организации ПДП состоит в том, что для обмена используются те машинные циклы процессора, в которых он не обменивается данными с памятью. В такие циклы контроллер ПДП может обмениваться данными с памятью, не мешая работе процессора. Однако возникает необходимость выделения таких циклов, чтобы не произошло временного перекрытия обмена ПДП с операциями обмена, инициируемыми процессором. В некоторых процессорах формируется специальный управляющий сигнал, указывающий циклы, в которых процессор не обращается к системному интерфейсу. При использовании других процессоров для выделения таких циклов необходимо применение в контроллерах ПДП специальных селектирующих схем, что усложняет их конструкцию. Применение рассмотренного способа организации ПДП не снижает производительности микроЭВМ, но при этом обмен в режиме ПДП возможен только в случайные моменты времени одиночными байтами или словами.  
      Более распространенным является ПДП с "захватом цикла" и принудительным отключением процессора от шин системного интерфейса. Для реализации такого режима ПДП системный интерфейс микроЭВМ дополняется двумя линиями для передачи управляющих сигналов "Требование прямого доступа к памяти" (ТПДП) и "Предоставление прямого доступа к памяти" (ППДП).  
Управляющий сигнал ТПДП формируется контроллером прямого доступа к памяти. Процессор, получив этот сигнал, приостанавливает выполнение очередной команды, не дожидаясь ее завершения, выдает на системный интерфейс управляющий сигнал ППДП и отключается от шин системного интерфейса. С этого момента все шины системного интерфейса управляются контроллером ПДП. Контроллер ПДП, используя шины системного интерфейса, осуществляет обмен одним байтом или словом данных с памятью микроЭВМ и затем, сняв сигнал ТПДП, возвращает управление системным интерфейсом процессору. Как только контроллер ПДП будет готов к обмену следующим байтом, он вновь "захватывает" цикл процессора и т.д. В промежутках между сигналами ТПДП процессор продолжает выполнять команды программы. Тем самым выполнение программы замедляется, но в меньшей степени, чем при обмене в режиме прерываний.  
       Применение в микроЭВМ обмена данными с ВУ в режиме ПДП всегда требует предварительной подготовки, а именно: для каждого ВУ необходимо выделить область памяти, используемую при обмене, и указать ее размер, т.е. количество записываемых в память или читаемых из памяти байт (слов) информации. Следовательно, контроллер ПДП должен обязательно иметь в своем составе регистр адреса и счетчик байт (слов). Перед началом обмена с ВУ в режиме ПДП процессор должен выполнить программу загрузки. Эта программа обеспечивает запись в указанные регистры контроллера ПДП начального адреса выделенной ВУ памяти и ее размера в байтах или словах в зависимости от того, какими порциями информации ведется обмен. Сказанное не относится к начальной загрузке программ в память в режиме ПДП. В этом случае содержимое регистра адреса и счетчика байт слов устанавливается переключателями или перемычками непосредственно на плате контроллера.  
     Блок-схема простого контроллера ПДП, обеспечивающего ввод данных в память микроЭВМ по инициативе ВУ в режиме ПДП "Захват цикла", приведена на рис. 1.15.  
 
Рис. 1.15. Контроллер ПДП для ввода данных из ВУ в режиме "Захват цикла"и отключением процессора от шин системного интерфейса.  
Перед началом очередного сеанса ввода данных из ВУ процессор загружает в регистры его контроллера следующую информацию: в счетчик байт - количество принимаемых байт данных, а в регистр адреса - начальный адрес области памяти для вводимых данных. Тем самым контроллер подготавливается к выполнению операции ввода данных из ВУ в память микроЭВМ в режиме ПДП.  
Байты данных из ВУ поступают в регистр данных контроллера в постоянном темпе. При этом каждый байт сопровождается управляющим сигналом из ВУ "Ввод данных", который обеспечивает запись байта данных в регистр данных контроллера. По этому же сигналу и при ненулевом состоянии счетчика байт контроллер формирует сигнал ТПДП. По ответному сигналу процессора ППДП контроллер выставляет на шины адреса и данных системного интерфейса содержимое своих регистров адреса и данных соответственно. Формируя управляющий сигнал "Вывод", контроллер ПДП обеспечивает запись байта данных из своего регистра данных в память микроЭВМ. Сигнал ППДП используется в контроллере и для модификации счетчика байт и регистра адреса. По каждому сигналу ППДП из содержимого счетчика байт вычитается единица, и как только содержимое счетчика станет равно нулю, контроллер прекратит формирование сигналов "Требование прямого доступа к памяти".  
На примере простого контроллера ПДП мы рассмотрели только процесс подготовки контроллера и непосредственно передачу данных в режиме ПДП. На практике любой сеанс обмена данными с ВУ в режиме ПДП всегда инициируется программой, выполняемой процессором, и включает два следующих этапа.  
       1. На этапе подготовки ВУ к очередному сеансу обмена процессор в режиме программно-управляемого обмена опрашивает состояние ВУ (проверяет его готовность к обмену) и посылает в ВУ команды, обеспечивающие подготовку ВУ к обмену. Такая подготовка может сводиться, например, к перемещению головок на требуемую дорожку в накопителе на жестком диске. Затем выполняется загрузка регистров контроллера ПДП. На этом подготовка к обмену в режиме ПДП завершается и процессор переключается на выполнение другой программы.  
        2. Обмен данными в режиме ПДП начинается после завершения подготовительных операций в ВУ по инициативе либо ВУ, как это было рассмотрено выше, либо процессора.        В этом случае контроллер ПДП необходимо дополнить регистром состояния и управления, содержимое которого будет определять режим работы контроллера ПДП. Один из разрядов этого регистра будет инициировать обмен данными с ВУ. Загрузка информации в регистр состояния и управления контроллера ПДП производится программным путем.  
       Наиболее распространенным является обмен в режиме прямого доступ к памяти с блокировкой процессора. Он отличается от ПДП с "захватом цикла" тем, что управление системным интерфейсом передается контроллеру ПДП не на время обмена одним байтом, а на время обмена блоком данных. Такой режим ПДП используется в тех случаях, когда время обмена одним байтом с ВУ сопоставимо с циклом системной шины.  
В микроЭВМ можно использовать несколько ВУ, работающих в режиме ПДП.      Предоставление таким ВУ шин системного интерфейса для обмена данными производится на приоритетной основе. Приоритеты ВУ реализуются так же, как и при обмене данными в режиме прерывания, но вместо управляющих сигналов "Требование прерывания" и "Предоставление прерывания" (рис. 18 Организация прерываний в микроЭВМ) используются сигналы "Требование прямого доступа" и "Предоставление прямого доступа", соответственно.

       Интегральная схема, или микросхема (ИМС, ИС, МС), это микроэлектронное изделие, состоящее из активных (транзисторов) и пассивных (диодов, резисторов, конденсаторов) элементов, проводников, заключенное в корпус и представляющее собой неразделимое целое. По технологии изготовления микросхема делится на виды микросхем :

  • полупроводниковые микросхемы (твердотельная схема от англ. solid state)- в такой микросхеме все элементы и их соединения изготавливаются в объеме (внутри) и частично на поверхности полупроводника.
  • пленочные микросхемы - все элементы и их соединения выполнены в виде пленок из проводящих и диэлектрических материалов на диэлектрическом основании.
  • гибридные микросхемы – в гибридных микросхемах пассивные элементы и соединительные проводники изготавливают по пленочной технологии, а бескорпусные транзисторы и диоды соединяют тонкими проводами.

По функциональному назначению разделяют следующие виды микросхем:

  • аналоговые – обрабатывают сигналы, изменяющиеся по закону непрерывной функции;
  • цифровые – обрабатывают цифровые сигналы.

Микросхемы дешифраторы преобразуют входной двоичный код в выходной код – унарный (или позиционный) – где только на одном из всех выходов дешифратора имеется единица. В положительной логике единицей является высокий уровень, но для большинства TТЛ дешифраторов активным является низкий уровень.

 

 

 

 

2. Внешние запоминающие  устройства.

  Эти устройства обеспечивают хранение больших массивов информации. Они относительно недороги, но обладают значительно меньшим быстродействием, чем устройства внутренней памяти ЭВМ. Наиболее широкое распространение получили ВЗУ на магнитных носителях (лентах и дисках).

 Магнитная лента (МЛ) - это эластичная основа из пластмассового материала, на которую наносится магнитное покрытие. Магнитные диски могут быть жесткими и гибкими. Жесткие магнитные диски изготавливаются из алюминиевых сплавов и покрываются ферролаком или металлической пленкой на основе никеля, кобальта, вольфрама.

 Гибкие магнитные диски  (ГМД) создаются на пластмассовой  основе с магнитным покрытием.

          Запись информации производится  при движении магнитного носителя  под магнитной головкой, в результате  чего изменяется состояние намагниченности  участка магнитного материала.  Считывание записанной информации  осуществляется с помощью головки  считывания. Данные могут одновременно  записываться на нескольких параллельных  дорожках при наличии соответствующего числа магнитных дорожек.

Информация о работе Архитектура микропроцессора