Понятие транзисторов

Автор: Пользователь скрыл имя, 12 Января 2012 в 17:52, реферат

Краткое описание

ТРАНЗИСТОР - полупроводниковый прибор, предназначенный для усиления электрического тока и управления им. Транзисторы выпускаются в виде дискретных компонентов в индивидуальных корпусах или в виде активных элементов т.н. интегральных схем, где их размеры не превышают 0,025 мм. В связи с тем что транзисторы очень легко приспосабливать к различным условиям применения, они почти полностью заменили электронные лампы.

Файлы: 1 файл

ТРАНЗИСТОР.docx

— 314.64 Кб (Скачать)

     
    Рис. 6. ПОЛЕВОЙ ТРАНЗИСТОР. Управление током  осуществляется посредством  затворов. Такие транзисторы, изготовленные МОП-методом (слева) или методом диффузии (справа), являются униполярными, т.е. в них активную роль играют носители только одного типа. Полевые МОП-транзисторы с электронами в качестве носителей называются n-МОП-транзисторами (а те, в которых носителями служат дырки, называются p-МОП-транзисторами). В n-МОП-транзисторе имеются две области n-типа, сформированные в подложке из кремния p-типа. Затвор - это электрод, изолированный от полупроводника тонким слоем диоксида кремния. В транзисторе, работающем в режиме обогащения, положительный потенциал, под которым находится сток, оказывает притягивающее действие на электроны источника. Но они не могут проходить через кремний p-типа с высокой концентрацией дырок. Когда же на затворе создается положительный заряд, возникающее при этом электрическое поле притягивает электроны к поверхности и здесь в тонком слое образуется проводящий канал, по которому ток проходит от истока. В n-МОП-транзисторе, работающем в режиме обеднения, между истоком и стоком имеется непрерывный проводящий канал из кремния n-типа, так что в нормальном состоянии транзистор пропускает ток. При подаче же на затвор отрицательного напряжения ток прекращается, так как электроны выталкиваются из канала. В полевом транзисторе с управляющим p-n-переходом электроны текут от истока к стоку. Ток электронов модулируется изменением напряжений на затворе и стоке. Поскольку МОП-транзисторы не требуют изолирующих островков, они допускают более высокую плотность "упаковки" на микросхеме, чем биполярные транзисторы. а - полевой n-МОП-транзистор; б - ПТ с управляющим p-n-переходом.

     
    В процессе работы МОП-транзистора с n-каналом электроны, являющиеся основными носителями, выходя из истока, входят в канал и втягиваются в сток, который при этом приобретает положительное смещение относительно истока. Ток электронов модулируется напряжением на затворе. Как только потенциал стока, нарастая, сравняется с разностью потенциалов затвора и истока, ширина канала уменьшается до нуля и происходит так называемая отсечка. При дальнейшем повышении выходного напряжения на стоке ток остается почти постоянным. Поскольку ток от затвора через диэлектрик практически отсутствует, входной импеданс полевого МОП-транзистора необычайно велик. Поэтому на затворе может длительное время сохраняться заряд, что позволяет создавать простые и изящные полупроводниковые запоминающие устройства. Благодаря этой интересной особенности полевых МОП-транзисторов и их малым размерам они приобрели важное значение в электронной промышленности. 
    ПТ с управляющим p-n-переходом. В таком полевом транзисторе контакты подводятся к полоскам в "кармане" высокоомного полупроводника n-типа. Наружная полоска является истоком; средняя полоска - сток - положительна относительно источника, так что от истока к стоку текут основные носители (электроны). Области затвора (p-типа) расположены в верхнем и нижнем слоях и соединены между собой диффузионно (рис. 6). В рабочем режиме на p-n-переход подается напряжение обратного смещения, так что в область n-типа распространяется зона обеднения. Изменяя обратное смещение на затворе, можно управлять шириной канала между затворами и модулировать ток. При достаточно большом напряжении происходит отсечка. Изменяя сочетания напряжений на затворе и стоке, можно сделать так, чтобы насыщение тока достигалось на любом постоянном уровне тока вплоть до нуля. ПТ с управляющим p-n-переходом отличается очень высоким входным импедансом и очень низким уровнем шума. Поэтому он хорошо подходит для входного каскада тюнеров-усилителей. 
    Недостатки и надежность. В таких применениях, как телефонное, спутниковое, автомобильное и промышленное оборудование, от транзисторов требуется очень высокий уровень надежности. Скромная АТС, например, насчитывает около миллиона компонентов (в том числе транзисторов, резисторов и конденсаторов). За год они наберут около 1010 ч наработки на компонент. Один отказ за миллиард часов наработки - желательная и достижимая в настоящее время интенсивность отказов - соответствует примерно одному отказу в месяц. Существуют два типа отказов: внезапные (обусловленные дефектами изготовления, такими, как непрочное скрепление и треснувшие микрокристаллы) и постепенные (которые могут быть вызваны диффузией контактных материалов и поверхностными процессами, причем то и другое подвержено температурному ускорению). Для типичных транзисторов доля внезапных отказов может достигать 0,1%. Но такие отказы случаются обычно на начальной стадии работы транзистора. Когда речь идет о транзисторах для особо важных систем, например спутниковых, внезапные отказы можно отсеять путем испытаний на ускоренное температурное старение или старение под нагрузкой, а также путем термоциклирования. Однако такие методы оправдывают себя лишь в случае особо ответственного оборудования. Постепенные отказы (когда повреждение накапливается) носят более фундаментальный характер. Эффекты, лежащие в их основе, можно собирательно назвать эффектами поверхностного заряда, хотя некоторые из них суть проявление связанного заряда на внутренней границе кремний -диоксид или поверхностных состояний, способных захватывать заряд; это могут быть эффекты, связанные с наличием подвижных ионов, например натрия, в диоксиде либо подвижных ионов или загрязнений на внешней стороне слоя диоксида или нитрида кремния. Тем не менее трудности, связанные с различными поверхностными зарядами, в основном устранены. Контроль за упомянутыми поверхностными эффектами доведен до такого уровня, что в качественно выполненных приборах они не представляют проблемы, и транзисторы pnp-типа столь же надежны, как и транзисторы npn-типа. Срок службы транзистора всегда укорачивает влага, остающаяся в газовой среде приборов, герметизированных в металлический корпус, и осаждающаяся на поверхности приборов, герметизированных пластмассой. Влага может придать подвижность поверхностным загрязнениям и тем самым привести к возникновению проводящих каналов. Это можно обнаружить, подав смещение на незагерметизированный транзистор и подышав на него. Если на поверхности транзистора имеется достаточно большой заряд, то ток утечки увеличивается и усиливаются пробойные явления, что указывает на образование проводящего канала. Но стоит снять напряжение и высушить поверхность, как транзистор восстанавливает свои характеристики. Влага также вызывает электролитическую коррозию металла электрода. Золото корродирует в присутствии даже малых количеств хлора (обычно в виде ионного остатка химического моющего средства, флюса или травильного раствора). Сверхвысокочастотные транзисторы и МОП-устройства легко повреждаются разрядом статического электричества. Для защиты от такого повреждения их выводы соединяют накоротко на время складского хранения и транспортировки. 
    Прогноз на будущее. Будут и далее совершенствоваться и все шире применяться такие методы, как ионная имплантация. Расширится применение интерметаллических соединений. Транзисторы в интегральных схемах уменьшатся в размерах, станут более быстродействующими, будут потреблять меньше мощности. Развитие транзисторной техники пойдет по двум направлениям: будут наращиваться рабочая мощность и рабочее напряжение дискретных транзисторов. В области низких уровней мощности все большую роль будут играть интегральные схемы. Цены на них будут и далее снижаться. Будет все больше расширяться круг применения интегральных схем в логических устройствах, системах контроля и управления, системах обработки информации для всех аспектов жизни человека и общества. В 1960 были впервые созданы интегральные схемы всего лишь с несколькими биполярными транзисторами на микрокристалл. В 1976 степень интеграции превысила четверть миллиона. К 1980 этот показатель достиг почти миллиона, а в 2000 приблизился к 10 млн.

Информация о работе Понятие транзисторов